
SCIONLab

SIGCOMM2020 SCION Tutorial / SIGCOMM Workshop Tasks

If you experience problems or have doubts during the course of the SIGCOMM2020 SCION
tutorial, please contact us on the tutorial’s Slack channel. After the tutorial is over, you can
contact us by email.

Open a terminal in your host OS and change the working directory to where the Vagrantfile
from SCIONLab is located. You have to start up the VM, and for that you can execute:

vagrant up

Some messages will be displayed, indicating the progress of the VM creation. The command
should exit with zero (you can check with echo $? right after vagrant up has finished).

Every time you want to log in to your VM you can go to the directory where the Vagrantfile is,
and execute:

vagrant ssh

That will open a shell terminal inside your VM.

At any point you can check if the services are running with sudo systemctl list-dependencies
scionlab.target . It should list at least 4 services: border router, control service, daemon, and
dispatcher must be running.

Now that you have a terminal open in your VM, check connectivity to the infrastructure. We can
perform an SCMP echo, which is similar to an ICMP echo but with SCION, by running:

scmp echo -remote 18-ffaa:0:1201,128.237.152.180

This sends SCMP echo packets to a computer with IP 128.237.152.180 in AS 18-ffaa:0:1201 .
This computer is part of the SCIONLab infrastructure, and should reply to those echo packets.

SCION Tutorial

First steps with SCION

Contact information

Starting the VM

https://docs.scionlab.org/
https://sigcomm.slack.com/archives/C0186E0GY0G
https://docs.scionlab.org/#contact

The command should output the reply packets arriving shortly after, with some milliseconds
latency. Of course, you can send SCMP echo packets to other computers in other ASes. Try with
those of your colleagues.

The easiest way to explore the SCION system and the topology is by using the SCIONLab User
AS web application. We are going to install it by logging into your VM (vagrant ssh as mentioned
before), and then running:

sudo apt-get install -y scion-apps-webapp

sudo systemctl start scion-webapp.service

With that, the web application should be running inside the VM, listening for connections on port
8000 . Because the VM is configured to forward that port, you can already connect from your host
machine at [http://localhost:8000]. In this page, the health status of your user AS is displayed. All
the sections in the health check should be passing successfully, and displayed in green.

Go to the page Apps and select one of the apps (bwtester, camerapp, sensorapp):

bwtester (link) Tests bandwidth for a given path. If you select this option, please don’t
overwhelm our routers by using much bandwidth, or running it for longer than some seconds.

camerapp (link) Downloads image files from the server. These images can be periodically
grabbed from a device, e.g. a camera.

sensorapp (link) Downloads sensor information.

You should not need to change the source settings but you can select any of the ASes
preconfigured in the list as destination or could enter the information of any of your colleagues’
ASes.

You can either directly execute the different apps on the Execute tab or explore possible paths to
your selected destination on the Paths tab. Note that you can explore paths to your colleagues’
ASes even if they have not yet set up the selected services. You can have an overview of the
SCIONLab AS infrastructure here.

The web application also allows you to look at the TRC of your ISD as well as your certificate
and the SCION services running in your AS. Just copy the contents of the payload which are
base64 encoded, and decode them online or with the command base64 -d . You will see a json
object with fields like "primary_ases" , etc.

Inside your VM, you can explore several subdirectories:

Explore the SCION system and use SCION apps

USING THE WEB APPLICATION

•

•

•

FROM A SHELL INSIDE YOUR VM

https://docs.scionlab.org/content/apps/bwtester.html
https://docs.scionlab.org/content/apps/access_camera.html
https://docs.scionlab.org/content/apps/fetch_sensor_readings.html
https://www.scionlab.org/topology.png

The directory /var/log/scion/ allows you to access logs of the different SCION services. In
particular the control service’s log cs*-1.log can be interesting. Look for thing like path
segments requests and responses, or beacon registrations (grep for segReq , segment or
beacon).

The directory /etc/scion/gen/ contains configuration files for you AS such as the local
topology.

The topology files are a set of json files located under /etc/scion/gen/ that you can find with
find /etc/scion/gen -name topology.json . They all are identical in your AS. If you open one,
you will see something like:

{

 "Attributes": [],

 "BorderRouters": {

 "br17-ffaa_1_13-1": {

 "CtrlAddr": {

 "IPv4": {

 "Public": {

 "Addr": "127.0.0.1",

 "L4Port": 30045

 }

 }

 },

 "Interfaces": {

 "1": {

 "Bandwidth": 1000,

 "ISD_AS": "17-ffaa:0:1107",

 "LinkTo": "PARENT",

 "MTU": 1472,

 "Overlay": "UDP/IPv4",

 "PublicOverlay": {

 "Addr": "10.1.0.129",

 "OverlayPort": 50000

 },

 "RemoteOverlay": {

 "Addr": "10.1.0.1",

 "OverlayPort": 50039

 }

 }

 },

 "InternalAddrs": {

•

•

•

 "IPv4": {

 "PublicOverlay": {

 "Addr": "127.0.0.1",

 "OverlayPort": 31045

 }

 }

 }

 }

 },

 "ControlService": {

 "cs17-ffaa_1_13-1": {

 "Addrs": {

 "IPv4": {

 "Public": {

 "Addr": "127.0.0.1",

 "L4Port": 30254

 }

 }

 }

 }

 },

 "ISD_AS": "17-ffaa:1:13",

 "MTU": 1472,

 "Overlay": "UDP/IPv4"

}

This topology defines two services: one control service and one border router. The control
service has the address where inside the AS it is listening for requests (such as path retrieval).
The border router defines, among other things, the interfaces to and from the outside of the AS.
The interface in the example is a connection to a provider, using an IPv4 overlay, listening at
10.1.0.129:50000 and connecting to 10.1.0.1:50039 . We will later on the tutorial work with the
topology file when we add a new interface.

Aside from the directories, you can also run from a terminal several SCION related commands,
like showpaths to show the available paths to a given AS, for example from your user AS to 18-
ffaa:0:1201 :

showpaths -dstIA 18-ffaa:0:1201

Run as well scmp echo like mentioned before.

You can also run the different SCION apps directly from the shell. For that call either scion-
bwtestclient , scion-imagefetcher , or scion-sensorfetcher with the option -s ISD-AS,[Addr]:Port .
The bandwidth tester allows you to explore potential paths by using the interactive option -i .

There are already several servers just for testing:

sensorserver at 17-ffaa:0:1102,[192.33.93.177]:42003

cameraserver at 17-ffaa:0:1102,[192.33.93.166]:42002

bwtestserver at list of bwtestservers

Be sure to visit the general tutorial about some existing SCION applications located here

Once you have setup one or more of following servers, you can post your IA and port to connect
to on the Slack channel(https://sigcomm.slack.com/archives/C0186E0GY0G), so other people
can try to connect to it and test it.

Running the bandwidth test server is straight forward. On the SCION tutorials page go to
its help page and follow the instructions there.

You can also set up the apps imageserver and sensorserver following the instructions on the
tutorials website. As you do not have sensors or a camera connected to your VM, you need to
use dummy scripts that print some information that you can pipe into sensorserver or periodically
create jpeg images for imageserver. Remember that you can transfer files between your host
and your VM using the host’s directory where the Vagrantfile is located, and that is mirrored
inside the VM on /vagrant .

Please set up the imageserver on the default port (40002). We have a script constantly trying to
fetch images from all ASes. You can fetch the combined image using imagefetcher from 17-
ffaa:1:d9b,127.0.0.1:40002 .

Example of script copying an image:

#!/bin/bash

while true

do

 cp images/success.jpg `date +"%Y-%m-%d_%k:%M"`_success.jpg

 sleep 60

done

•

•

•

Run your own SCION apps

BANDWIDTH TESTER

IMAGESERVER AND SENSORSERVER

https://docs.scionlab.org/content/apps/bwtester.html#scionlab-bandwidth-test-servers
https://docs.scionlab.org/content/apps/index.html
https://sigcomm.slack.com/archives/C0186E0GY0G
https://docs.scionlab.org/content/apps/bwtester.html
https://docs.scionlab.org/content/apps/index.html

Example of script printing system info:

#!/bin/bash

while true

do

 echo "hostname: `hostname`, user: `whoami`, current time: `date`"

 sleep 1

done

There is a simple web server that runs in a computer under the following address:

18-ffaa:0:1201,128.237.152.165:4443/

You can access the webpages manually with the bat application. Open a terminal inside your
VM with vagrant ssh and follow the next steps:

sudo apt-get install scion-apps-bat

scion-bat 18-ffaa:0:1201,128.237.152.165:4443/

The last command runs scion-bat , which is a curl like application that works with the SCION
protocol. More information here.

There is an IP regular http server running on a non publicly routeable address:

http://10.42.0.1:4443/

This server can be accessed using the SIG, as explained in the SIG task. It’s listed here for
completeness.

Configure another user AS in SCIONLab. Use a different attachment point or even ISD than the
one you have for your first AS. Download the tar file and extract the Vagrantfile like you did with
your first AS. Now, since we are going to run this VM at the same time as we also run the first
one, you have to edit the Vagrantfile and comment out with a # the following line:

Access a web server

WITH SCION

IP REGULAR HTTP SERVER

Set up an additional peering link with your second user AS

CONFIGURE A SECOND USER AS

https://docs.scionlab.org/content/apps/bat.html
https://www.scionlab.org/

config.vm.network "forwarded_port", guest: 8000, host: 8000, protocol: "tcp"

Add a new line right before config.vm.provider "virtualbox" do |vb| in the Vagrantfile . It will
configure a new interface in the VM with that IP:

config.vm.network :private_network, ip: "10.0.0.20"

You might also want to edit the settings about the memory reserved to the VM with the line
vb.memory = "2048" . Setting it to 1024 should also work okay, if your host machine starts to run
out of memory.

After saving the file, proceed like with the first VM:

vagrant up

vagrant ssh

Check connectivity to the infrastructure with scmp echo.

Output services running with sudo systemctl list-dependencies scionlab.target

Now go back to the directory where you have the Vagrantfile for your first VM and stop it by
running:

vagrant halt

Edit the Vagrantfile to add a new interface, like you did with your second AS, but with a different
IP. So, right before the line config.vm.provider "virtualbox" do |vb| add the following:

config.vm.network :private_network, ip: "10.0.0.10"

Save the file and run the VM again with vagrant up . Once it has booted, check again
connectivity with scmp echo. If everything is still fine, you can ping the other machine with a
normal IP ping command:

ping 10.0.0.20

This will send ICMP packets to the second VM, and it should reply normally.

Right now, the two VMs have a private network where they can communicate directly, using
10.0.0.10 and 10.0.0.20 as their IPs.

•

•

•

•

RECONFIGURE YOUR FIRST USER AS

EDIT THE TOPOLOGY FILES

Go to your first VM with vagrant ssh . Inside /etc/scion/gen there will be an ISD* directory, with
an AS* directory. Change directory to the sciond service by running:

cd /etc/scion/gen/ISD*/AS*/endhost

Now when you list the files, there will be one called topology.json . Open it with your favorite
editor, e.g. vim :

sudo cp topology.json topology.json.bak # create a backup copy of the file, convenient

sudo vim topology.json

In the Interfaces section, copy-paste one of the interfaces

Adjust the new interface appropriately:

Select a new unused interface ID e.g. 2 .

Set the LinkTo to PEER

Set the PublicOverlay to 10.0.0.10 , port 50001

Set the RemoteOverlay to 10.0.0.20 , port 50001

Set ISD_AS to your second user AS ISD and AS ID.

Save the modified topology file

Copy the modified topology file into all subdirectories of /etc/scion/gen/ISD*/AS*/ (all other
services need to know the new topology) sudo cp topology.json ../br*/ ; sudo cp
topology.json ../cs*/ .

Restart SCION by calling sudo systemctl restart scionlab.target

The added section to the topology file should look like this (where <ISD2>-ffaa:1:YYYY is the IA of
your second user AS); remember to replace <ISD2>-ffaa:1:YYYY with the appropriate ISD-AS ID
of your second user AS):

 "2": {

 "Bandwidth": 1000,

 "ISD_AS": "<ISD2>-ffaa:1:YYYY",

 "LinkTo": "PEER",

 "MTU": 1472,

 "Overlay": "UDP/IPv4",

 "PublicOverlay": {

 "Addr": "10.0.0.10",

 "OverlayPort": 50001

 },

 "RemoteOverlay": {

•

•

•

•

•

•

•

•

•

•

 "Addr": "10.0.0.20",

 "OverlayPort": 50001

 }

 }

As always, restart services with sudo systemctl restart scionlab.target and check connectivity
to the infrastructure with scmp echo.

When it’s clear that the first AS works fine, adapt the topology files of the second AS. Remember
to write the correct IA of the first AS, and to use the correct IPs for the public and remote
overlays. The section should look like this (where <ISD1>-ffaa:1:XXXX is the IA of your first AS;
remember to replace <ISD1>-ffaa:1:XXXX with the appropriate ISD-AS ID of your first user AS):

 "2": {

 "Bandwidth": 1000,

 "ISD_AS": "<ISD1>-ffaa:1:XXXX",

 "LinkTo": "PEER",

 "MTU": 1472,

 "Overlay": "UDP/IPv4",

 "PublicOverlay": {

 "Addr": "10.0.0.20",

 "OverlayPort": 50001

 },

 "RemoteOverlay": {

 "Addr": "10.0.0.10",

 "OverlayPort": 50001

 }

 }

Like before, copy the topology.json file to all subdirectories of /etc/scion/gen/ISD*/AS*/ . Then
restart services with sudo systemctl restart scionlab.target .

After waiting some seconds for the beacons to be propagated, you should now be able to use
this new path in any application. Let’s first find out if the peering path is visible by running:

showpaths -dstIA <ISD2>-ffaa:1:YYYY

This will print many lines with some of the possible paths from the two ASes. As an example,
one of the first lines that you should see would look like:

CHECK PEERING LINK

[0] Hops: [19-ffaa:1:XXXX 2>2 17-ffaa:1:YYYY] MTU: 1472, NextHop: 127.0.0.1:31045

When run from 19-ffaa:1:XXXX looking for 17-ffaa:1:YYYY .

Many of the applications accept a -i switch (interactive) that allows you to select the path
manually. Use it with scmp echo and observe that the latency is much lower than going upstream
and down again.

At any point you can install the scion netcat application with:

sudo apt-get install scion-apps-netcat

The application supports a subset of the regular BSD netcat command. Run netcat in listening
mode in a machine of one AS like:

scion-netcat -u -l 40002

And netcat connecting with:

scion-netcat -u <ISD1>-ffaa:1:XXXX,[127.0.0.1]:40002

Where <ISD1>-ffaa:1:XXXX is the IA of your other user AS. You can type in any of the running
processes, and it will echo it to the other side.

The SCION-IP gateway (SIG) is a mechanism that tunnels IP packets through the SCION
network. It can be configured to send packets to specified destination prefixes to another SIG in
a specified SCION AS, where they are decapsulated and forwarded. We have set up a SIG in
AS 18-ffaa:0:1201 and a standard webserver listening at 10.42.0.1:4443 (a private IP address
from RFC 1918 address space that is not globally routable). The goal of this exercise is for you
to set up a SIG that encapsulates IP packets sent to the prefix 10.42.0.0/24 in SCION packets
and sends them to the SIG in AS 18-ffaa:0:1201 , such that you can query the webserver with
the standard (non-SCION-aware) curl tool.

The following steps are a slightly modified version of the general SIG tutorial.

To install sig , run:

sudo apt install scion-sig

NETCAT

Set up a SCION-IP gateway (SIG)

INSTALL AND CONFIGURE SIG

https://docs.scionlab.org/content/apps/remote_sig.html

See Installation for details.

The scion-sig package includes configuration file templates. First, we copy and fill-in the
sig.toml template:

Set some variables that will be used below:

sigID=sig1

sigIP=127.0.0.1 # IP for the SCION address on which this SIG will bind

ISD=$(ls /etc/scion/gen/ | grep ISD | awk -F 'ISD' '{ print $2 }')

AS=$(ls /etc/scion/gen/ISD${ISD}/ | grep AS | awk -F 'AS' '{ print $2 }')

Create a configuration directory for the SIG

sudo mkdir /etc/scion/gen/ISD${ISD}/AS${AS}/sig${ISD}-${AS}-1/

Expand the placeholders in the sig.toml template and install it:

sed -e "s/\${ISD}/${ISD}/g;

 s/\${AS}/${AS}/g;

 s/\${IA}/${ISD}-${AS}/g;

 s/\${IAd}/${ISD}-${AS//_/:}/g;

 s/\${sigID}/${sigID}/g;

 s/\${sigIP}/${sigIP}/g;" < /usr/share/doc/scion-ip-gateway/templates/sig.config \

 | sudo tee \

 --output-error=exit /etc/scion/gen/ISD${ISD}/AS${AS}/sig${ISD}-${AS}-1/sig.toml

Each SIG requires traffic rules, in the form of a json configuration file. This configuration
specifies IP prefixes that can be forwarded to a SIG in a remote AS. Create the traffic rules for
the SIG at /etc/scion/gen/ISD${ISD}/AS${AS}/sig${ISD}-${AS}-1/${sigID}.json :

{

 "ASes": {

 "18-ffaa:0:1201": {

 "Nets": [

 "10.42.0.0/24"

]

 }

 },

 "ConfigVersion": 9001

}

Here, we tell the SIG to send all IP packets addressed to 10.42.0.0/24 to the AS 18-ffaa:0:1201 .

https://docs.scionlab.org/content/install/pkg.html#applications

Finally, the topology files need to be updated to include a SIG entry. This entry is required so that
the border routers can resolve the SIG service address. Insert the following snippet to the
topology file of every border router in the AS (after replacing ${ISD} and ${AS} with the
appropriate values):

 "SIG": {

 "sig${ISD}-${AS}-1": {

 "Addrs": {

 "IPv4": {

 "Public": {

 "Addr": "127.0.0.1",

 "L4Port": 31056

 }

 }

 }

 }

 },

For these changes in the topology files to take effect, the services need to be restarted:

sudo systemctl restart scionlab.target

Start the SIG process:

sudo -u scion sig -config=/etc/scion/gen/ISD${ISD}/AS${AS}/sig${ISD}-${AS}-1/sig.toml &

Now we need to ensure that packets sent to an address in 10.42.0.0/24 actually pass through
the SIG and that replies are also sent through the SIG. We have pre-configured the SIG in 18-
ffaa:0:1201 with a mapping between the addresses in 172.16.0.0/12 and ASes between 17-
ffaa:1:c00 and 20-ffaa:1:fff . For a particular ISD-AS, we have configured a /24 prefix, where
the last 12 bits are obtained as follows:

The 2 most-significant bits are determined by the ISD (0x0 for ISD17, …, 0x3 for ISD20)

The remaining 10 bits are given by the 10 least-significant bits of the AS

For example, the prefix 172.17.162.0/24 corresponds to the AS 17-ffaa:1:da2 . It is a fun
exercise to calculate the IP prefix for your AS by hand (or with a custom script), but you can also
simply use the following one-liner:

RUNNING THE SIG AND CONFIGURING ROUTING

•

•

a=${AS: -3: -2} b=${AS: -2} c=`echo "($ISD-17) * 4 + $((16#$a)) + 4" \

| bc` d=$((16#$b)) && echo "172.$c.$d.0/24"

You can set up a simple routing configuration, where only applications on SIG host can make
use of the link:

Assign an address in your IP prefix

sudo ip address add 172.XX.XXX.1 dev ${sigID}

Setup route to 10.42.0.0/24 in sigA.json

sudo ip route add 10.42.0.0/24 dev ${sigID}

These address and route settings will only live as long as the sig tunnel device. As soon as
the sig process terminates, this will be gone.

Now you should be able to ping the remote host

ping 10.42.0.1

The MTU set on the SIG’s tun device is unreliable or just plain wrong. Set a conservative
value of, e.g., 1200 bytes:

sudo ip link set mtu 1200 dev ${sigID}

You should now be able to fetch our website using curl :

curl http://10.42.0.1:4443

Select a partner for the remaining exercises. (If you don’t find a partner, you can use your two
configured SCIONLab ASes.) You can choose any of the following exercises in any order.

If you or your partner have set up any of the server apps in your AS, you can access your
partner’s apps in the same way as you have accessed the ones on the core ASes.

HINT

WARNING

Partner exercises

Connect to the SCION apps of your partner

Bonus exercise: Set up a SIG connection to your partner’s AS

You should already have set up a SIG in your AS and should be able to extend the configuration
to also tunnel traffic between your AS and your partner’s. Have a look at the general SIG tutorial
for further explanations.

Warning this exercise requires some expertise with your network.

Similarly to the peering exercise above, you can configure a new peering interface to your
partner. You will need to know their IA, their public IP and port. For this both you and your
partner must have public IP addresses (or the ability to “punch a hole” in the firewall of your
network or NAT setup).

Open the topology file and add a new interface with the correct IA, public IP and port.

Save the modified topology file and copy it into all subdirectories of /etc/scion/gen/ISD*/AS*/

Restart SCION by calling sudo systemctl restart scionlab.target `

Copyright © 2020, Network Security Group, ETH Zurich

Bonus exercise: Set up an additional peering link to your partner’s AS

•

•

•

https://docs.scionlab.org/content/apps/remote_sig.html

