Green Routing

CO₂ Transparency and Optimization on Inter-Domain Paths

Seyedali Tabaeiaghdaei, Simon Scherrer

Why CO₂-Awarenss?

Is it possible in Today's Internet?

ISPs select inter-domain paths

Endpoints have no control over paths

No means of carbon transparency

System Design

Carbon Intensity Estimation

Average carbon intensity

Instant carbon intensity

(i į)

Disseminating Carbon Emission Information

Beaconing-based

- Average intensity
- During beaconing
- Using StaticInfoExtension in PCBs

Path-service-based

- Instant intensity
- During communication
- By iteratively requesting on-path path services

Green Path Selection and Carbon Footprint Monitoring

Selection

- According to the average carbon intensity
- According to the instant carbon intensity

Monitoring

- Periodically
- Requesting the instant carbon intensity

A Green Competition?

Direct Impact of Green Path Selection

The Impact of Green Competition

AWK Group

ETH zürich

The first Internet-wide carbon footprint monitoring system

Enabling endpoints to select the greenest paths

Conclusion

Introduces green competition between ISPs

> Expected savings: 20% CO₂ reduction for global ISPs

Thank You

Seyedali Tabaeiaghdaei Network Security Group ETH Zürich seyedali.tabaeiaghdaei@inf.ethz.ch

