

SCION: PKI Overview

Adrian Perrig Network Security Group, ETH Zürich SCION

- PKI: Public-Key Infrastructure
- Purpose of PKI: enable authentication of an entity
- Various types of entities
 - Autonomous System (AS): ISP, university, corporation
 - Router
 - Service
 - Web site
- Important terms
 - Certificate: binds entity identifier to a cryptographic key
 - Root of trust: Axiomatically trusted key to start authentication
 - Certification Authority (CA): trusted entity that issues certificates

PKI Concepts: Brief Introduction

Desired PKI Properties

- Trust scalability: support heterogenous trust relationships
- Transparency
 - Possible to enumerate trust roots
 - Accountability of all PKI operations
- Resilient to trust root compromise
- Quick recovery from trust root compromise
- Trust control / agility
 - Entities can select which trust roots they need to rely upon Hosts can select trust roots for verification

- Control-plane PKI
 DRKey
- End-entity PKI
- Name-resolution PKI

- Control plane: System to determine and disseminate end-toend paths
 - Inter-domain control plane in current Internet: BGP + ICMP + support protocols
- Control-plane PKI mainly provides AS certificates to enable AS authentication
- Main requirement: high availability
 - Needs to work without reliance on availability of communication to PKI servers (to avoid cyclic dependency between routing and PKI operation)

Approach for Trust Scalability: Isolation Domains

- Observation: subset of the Internet can agree on roots of trust \rightarrow form Isolation Domain (ISD) with those particular roots of trust
- Authenticate entities within each ISD
- Users & domains can select ISD based on root of trust
- Also supports modern log-based PKI approaches: CT, ARPKI, ...
- Challenge: retain global verifiability

Trust Root Configuration (TRC)

- Each SCION ISD defines trust roots in a TRC
- Trust roots for three PKIs
 - Control-plane PKI: core AS certificates
 - End-entity PKI: root CA and log server certificates
 - Name-resolution PKI: root name server certificate
- Trust agility: hosts select TRC they want to use for verification
- TRCs enable efficient updating of trust roots
- TRC distribution is tied to path exploration and resolution

Sample TRC

```
{"ISD": 1,
"Description": "The first (test) ISD",
"Version": 2,
"CreationTime": 1480927723,
"ExpirationTime": 1483927723,
"CoreASes": {
  "1-11": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",
            "OnlineKey": "5n33hhBRT86/1S6L00h0RUWweYranrnLkD8uqLzArB4=",
            "OfflineKey": "kOScqpNRFMsal54sjlgbFxENWJq6ofdPOiazjiK9ta0="},
  "1-12": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",
            "OnlineKey": "tuJOOW5bNrlzhoyohdifXo70Zc8zFl4nFy0T4JlgP1I=",
            "OfflineKey": "VYDONHZjckKqXHgprT9zmrDwGhL5dElakxNsGuxnd5I="},
  "1-13": {"OnlineKeyAlg": "ed25519", "OfflineKeyAlg": "ed25519",
            "OnlineKey": "cXRYKtY/L18KHs4dt8G6e4itodFhhj7f3LvBS5xo3as=",
            "OfflineKey": "wUw9f9wFov/kWykV/T941Ju6dfJ2aeQD0tzmnIbo32E="}},
"RootCAs": {
  "VeriSign Class 3": {"Certificate": "MIID30wDQYJKoZIhvcNAQELBQA...",
          "OnlineKeyAlg": "ed25519", "OnlineKey": "F4tLPPhdEygoXidQK..."},
  "GeoTrust Global CA": {"Certificate": "MIID1jCCAr6gAwIBAgIIUuuzQL...",
          "OnlineKeyAlg": "ed25519", "OnlineKey": "pW2wH8DzCRVw2KGH4..."},
  "DigiCert Root CA": {"Certificate": "MIIEOzCCA7ugAwIBAgIQGNrRni...",
          "OnlineKeyAlg": "ed25519", "OnlineKey": "uppd70MBMQGGHrNAk..."}},
"CertLogs": {
  "ISD 1, Log1": {"1-11 1.1.2.3": "MIIHOzCCBbugAwI..."},
  "ISD 1, Log2": {"1-13 3.0.8.7": "MIIDbTCCAlWgAwI..."}},
"ThresholdEEPKI": 3,
"RAINS": {"RootRAINSKey": "fQRbxC1lfznQgUy286dUV4otp6F01vvpX1FQHKOt...",
          "OnlineKeyAlg": "ed25519", "OnlineKey": "VAsCtoEndLXAPtXVX..."},
"QuorumTRC": 2,
"QuorumCAs": 2,
"GracePeriod": 18000,
"Quarantine": false,
"Signatures": {
  "1-11": "zQrFoqqaNfG62X5OyyraF8kQok4Ehh3P0HooGemX+UwvhxhZnydw...",
  "1-12": "7DEAyG11d03jQqems22y9RZmD87VgBnbcvR7YxRIq58eLDkekV20...",
  "1-13": "D+Eg10++oGfqKVXB/bxufdz5GbXY5CTQFGQbOSJCP07c8ebb3SzK...",
  "2-1": "ufTuR26sWp53MHu5suyQuChxWhWQM7gmgkLKJJI12KJPAdK98Ki8a...",
  "ISD 2, RAINS": "2BwAtQ4mG9rdnpo1VGVIj96f/Ueq1TNgdXPI9YS1EREm...",
  "ISD 2, CA: TestCA": "ZO9NkrvTJ/Vec8X5T9ja1IV+o2xvhTQ6FZatns0..."}}
```

```
ETHzürich
```

Control-plane PKI roots

End-entity PKI root CAs

End-entity PKI Logs

Name-resolution PKI

Cross-signatures

TRC Cross Signatures

ISD-to-ISD TRC Verification

TRC verification of other ISDs follows core paths Additional cross-signatures are possible (dashed blue arrows)

- New TRC' is signed by quorum of trust roots defined in previous TRC
- Also cross-signed by neighboring ISDs
- TRC' version is announced in PCB, ASes fetch TRC' if they do not already have it
- Result: entire ISD rapidly obtains new TRC' with new trust roots

TRC Update

SCION

AS Certificates

- dependency between control plane and PKI operation Solution: use short-lived certificates for non-core ASes, valid
- Each AS obtains certificate signed by a core AS Problem: AS certificate revocation check can introduce cyclic
 - for up to 3 days
 - Core AS certificate can be revoked through TRC update
- Any AS can certify any other AS through chain of cross-signed TRCs and by verifying core AS signatures
- Certificate distribution is tied to path exploration and resolution

SCION

External ISD AS Certificate Verification

Desired PKI Properties: SCION CP-PKI

Trust scalability: support heterogenous trust relationships Transparency Possible to enumerate trust roots Accountability of all PKI operations Resilient to trust root compromise Quick recovery from trust root compromise Trust control / agility Entities can select which trust roots they need to rely upon Weight Hosts can select trust roots for verification

SCION

Dynamically Recreatable Key (DRKey)

- AS certificates (authenticated through TRCs) can be used to bootstrap authentication and secrecy
 - Unfortunately, asymmetric-key cryptography is quite slow and would not work well for the following cases:
 - A router needs to send an authenticated error message to a remote AS
 - An end host needs to encrypt a secret value for each router on a path
- Goals
 - Enable rapid establishment of a shared secret key between any two entities
 - Routers can derive per-host secret key efficiently without any per-AS or per-host state

DRKey: Deriving AS-to-AS Symmetric Keys

- Idea: use a per-AS secret value to derive keys through an efficient Pseudo-Random Function (PRF)
- Example: AS X creates a key for AS Y using X's secret value SV_X
 - $K_{X \rightarrow Y} = PRF_{SVX} ("Y")$
 - Intel AESni instructions enable PRF computation within 50 cycles.
 Key computation can be faster than in-memory key lookup!
- Any entity in AS X knowing secret value SV_X can derive $K_{X \rightarrow *}$
 - Example: router inside AS X can derive $K_{X \rightarrow Y}$ on-the-fly
- AS Y can fetch $K_{X \to Y}$ from AS X through a secure channel set up based on AS certificates

ETHzürich

Control-plane PKI DRKey

- End-entity PKI
- Name-resolution PKI

SCION

Roots of Trust in Current Internet

SCION

- OS / browser CA certificate store: roots of trust of TLS PKI [Oligopoly model]
- Observation: Browser and OS manufacturer control roots of trust, thus their update keys become most fundamental root of trust [Monopoly model]
- Interesting question: how to become a root CA?
 - Pay ~\$50'000 to two major browser vendors to add new root CA certificate, others will follow suit

Domain certificates

PKI Properties: TLS PKI

Trust scalability: support heterogenous trust relationships Transparency Possible to enumerate trust roots Accountability of all PKI operations Resilient to trust root compromise Quick recovery from trust root compromise Trust control / agility CEntities can select which trust roots they need to rely upon Hosts can select trust roots for verification

Improvement: Certificate Transparency

- Google has leveraged market leader position to improve security of TLS PKI ecosystem (Chrome browser market share in May 2017: ~60%)
- Certificate Transparency: public log servers that create public ledger on which certificates are valid
 - If a certificate does not appear on any ledger, it is invalid
- Google has made CA compliance with CT mandatory by October 2017

PKI Properties: Certificate Transparency

Trust scalability: support heterogenous trust relationships Transparency Possible to enumerate trust roots Accountability of all PKI operations Resilient to trust root compromise Quick recovery from trust root compromise Trust control / agility Entities can select which trust roots they need to rely upon Hosts can select trust roots for verification

SCION

Goal: Increase Security of TLS PKI

- Observation: for man-in-the-middle attack, adversary creates new bogus certificate
- Basic idea: cross-validate TLS certificate by multiple parties
- Perspectives [Wendlandt et al. 2008]
 - Network of Notary servers record certificates from multiple vantage points
 - Browser contacts a random subset of notaries
- CT [Laurie et al. 2012], Sovereign keys [Eckersley 2012]
 - Public ledger containing all valid certificates
- ARPKI [Basin et al. 2014]
- PoliCert [Szałachowski et al. 2014]

ETHzürich

SCION End-Entity PKI: ARPKI + PoliCert

- Subject certificate policy (SCP): policy that all of a domain's certificates need to adhere to
- Multi-signature certificate (MSC): domain certificate signed by multiple entities + signed by SCP
- Observation: Domain's Subject Certificate Policy (SCP) changes infrequently \rightarrow invest more effort to secure it
- SCP registration:

SCION End-Entity PKI: ARPKI + PoliCert

- TRC contains:
- Trust roots of CAs and log servers Threshold for number of signatures required for SCP SCP defines domain-specific policy
 - List of trusted CAs

SCION

Threshold for number of signatures required for MSC Hard fail or soft fail in case MSC parameter violation

Security of SCION End-Entity PKI

- with TRC A
- to forge an SCP or MSC

Consider domain D has an SCP and MSC registered in ISD

Important property: any client that uses TRC A as its root of trust can be assured that at least a threshold number of trusted entities defined in TRC A must be malicious in order

Therefore, any client that obtains an SCP or MSC defined by a TRC other than TRC A, needs to obtain a proof of absence that there's no SCP in the end-entity PKI defined by TRC A

25

PKI Properties: End-Entity PKI

Trust scalability: support heterogenous trust relationships Transparency Possible to enumerate trust roots Accountability of all PKI operations Resilient to trust root compromise Quick recovery from trust root compromise Trust control / agility Entities can select which trust roots they need to rely upon Weight Hosts can select trust roots for verification

What about DNSSEC-based PKI?

- DANE: DNSSEC entry also contains domains' certificate
- Problems
 - All entities on the verification chain need to be trusted
 → system only as secure as the weakest link
 - Kill switch: revocation of a key invalidates all child entries

PKI Properties: DANE

- XTrust scalability: support heterogenous trust relationships Transparency Possible to enumerate trust roots Accountability of all PKI operations Resilient to trust root compromise Quick recovery from trust root compromise Trust control / agility Entities can select which trust roots they need to rely upon Hosts can select trust roots for verification
- ETHzürich

28

SCION Name-Resolution PKI

- Double verification path:
 - each step is verified
 - Domain entry is also signed by SCP
- Advantages
 - Name-resolution PKI used for availab
 - SCP used for high security

All delegations in name resolution process are signed,

PKI Properties: Name-Resolution PKI

Trust scalability: support heterogenous trust relationships Transparency Possible to enumerate trust roots Accountability of all PKI operations Resilient to trust root compromise Quick recovery from trust root compromise Trust control / agility Entities can select which trust roots they need to rely upon Weight Hosts can select trust roots for verification

- SCION integrates three innovative PKI systems
 - Control-plane PKI
 - High availability with simple operation
 - TRC provides trust root transparency, control, and easy updatability
 - DRKey provides highly efficient and scalable symmetric key derivation
 - End-entity PKI
 - High security: requiring several "trusted" entities to collude to create bogus certificate
 - First PKI where domain can limit the set of trust roots for the certification of its certificate
 - Name-resolution PKI
 - DNSSEC-style PKI only used for availability
 - End-entity PKI used for high security

For More Information ...

- ... please see our web page:
 <u>www.scion-architecture.net</u>
- Chapter 4 of our book "SCION: A secure Internet Architecture"
 - Available from Springer this Summer 2017
 - PDF available on our web site
- Following presentations
 - Control-plane PKI
 - DRKey
 - End-entity PKI
 - Name-resolution PKI
 - ISD coordination

secure Internet Architecture" mer 2017

