
Next-Generation Secure
Public-Key Infrastructures

Paweł	Szałachowski	
Network	Security	Group,	ETH	Zürich

Public Key Infrastructure (PKI)
▪ Scalability	issues	with	symmetric	crypto	
• Distribution	
• Challenges	in	managing	n	secrets

2

Symmetric keys

Public Key Infrastructure (PKI)
▪ Scalability	issues	with	symmetric	crypto	
• Distribution	
• Challenges	in	managing	n	secrets	

▪ Asymmetric	crypto	(DH,	RSA,	…)	solves	the	scalability	problems,	...	but	creates	a	new	one:		
▪ How to ensure that public-key is accessible and authentic ?

3

Symmetric keys

PKI

(public keys)

Current SSL/TLS PKI Model

CA

a.comClient

a.com

▪ SSL/TLS	Protocol	
▪ Certification	Authority	(CA)	is	trusted	by	
clients	and	domains	

▪ Step	(1) performed	one-time	per	
certificate

4

(1)
a.com

Current SSL/TLS PKI Model

CA

a.comClient

ClientHello

ServerHello a.com

▪ SSL/TLS	Protocol	
▪ Certification	Authority	(CA)	is	trusted	by	
clients	and	domains	

▪ Step	(1) performed	one-time	per	
certificate

5

(2a)

(2b)

a.com
(1)

a.com

Problem with current SSL/TLS PKI:  
Weak certificate authentication

▪ Certificates	signed	by	single	CA	
•Currently,	cannot	sign	certificate	by	multiple	CAs	

▪ Weakest-link	security	with	too	many	trusted	entities	
•Current	browsers	trust	~1500	keys	that	can	issue	valid	certificates

6

Attacker a.comClient a.com

CA4CA3CA2CA1
...

Man-In-The-Middle attack:

Problem with current SSL/TLS PKI:  
Weak certificate authentication

▪ Certificates	signed	by	single	CA	
•Currently,	cannot	sign	certificate	by	multiple	CAs	

▪ Weakest-link	security	with	too	many	trusted	entities	
•Current	browsers	trust	~1500	keys	that	can	issue	valid	certificates

7

Attacker a.comClient a.com

CA4CA3CA2CA1
...

a.com

ClientHello

ServerHello

(2)

(1)

(3)

Man-In-The-Middle attack:

Problem with current SSL/TLS PKI:  
Weak certificate authentication

▪ Certificates	signed	by	single	CA	
•Currently,	cannot	sign	certificate	by	multiple	CAs	

▪ Weakest-link	security	with	too	many	trusted	entities	
•Current	browsers	trust	~1500	keys	that	can	issue	valid	certificates

8

Attacker a.comClient

ClientHello

ServerHello
a.com

CA4CA3CA2CA1
...

a.com

ClientHello

ServerHello

(2)

(1) (4)
(5)(3)

Man-In-The-Middle attack:

Problems with current SSL/TLS PKI

9

Problems with current SSL/TLS PKI
▪ Weakest-link	security	
▪ Revocation	system	is	insecure	and	inefficient	
•Various	schemes	
•Some	CAs	are	too-big-to-fail

▪ Trust	agility	
•Domains	cannot	state	which	CAs	are	trusted	

▪ Transparency	
•CAs’	actions	are	not	transparent		

▪ Imbalance		
•CAs	have	almost	unlimited	power	

▪ Misconfigurations	
•SSLv2,	weak	crypto,	NULL	cipher	suites

10

Problems with current SSL/TLS PKI:  
Security warnings and error handling

▪ Drawbacks	of	TLS	error	handling	by	browsers	and	users	
•Users	prefer	to	ignore	errors	and	visit	web	sites	
•Browsers	prefer	to	avoid	hard fail	to	cater	to	users	
•However	hard fail	is	the	only	effective	protection	against	an	attack!	
•Observation: Domain should decide on error handling

11

a.com
User

a.com

ClientHello

ServerHello
Attacker
?

Problems with current SSL/TLS PKI:  
Security warnings and error handling

▪ Drawbacks	of	TLS	error	handling	by	browsers	and	users	
•Users	prefer	to	ignore	errors	and	visit	web	sites	
•Browsers	prefer	to	avoid	hard fail	to	cater	to	users	
•However	hard fail	is	the	only	effective	protection	against	an	attack!	
•Observation: Domain should decide on error handling

12

a.com
User

a.com

ClientHello

ServerHello
Attacker
?

Browser
Hard/Soft fail

PoliCert: Secure and Flexible TLS Certificate Management [CCS’14]

▪ Observation:	many	problems	can	be	solved	when	domains	can	
express	their	own	security	policies	
•Many	domains	have	multiple	certificates	(and	servers)	and	want	to	ensure	consistent	policy	across	all	
certificates	(and	servers)	
•Desire	to	enforce	security	policy	for	all	subdomains	

▪ PoliCert	allows	domains	to	express	security	policies	(certificates,	
connections,	policy	inheritance	rules	for	subdomains,	and	TLS	
error	handling	controls)	
•Subject	Certificate	Policy	(SCP)	–	infrequently	updated	
•Multi	Signature	Certificate	(MSC)	–	frequently	updated	

▪ How	to	create	and	make	policies	accessible?

13

PoliCert: Parties
▪ Clients/CAs/Domains	as	today	
▪ Logs	are	public	and	highly	available	
▪ Auditors	monitor	Logs

14

Certificate Issuance
and Registration

Log
Audit

Certificate Validation

Client

CA

Domain Log

Auditor

SCP and MSC Creation

a.com

a.com’s
 SCP

CA4

CA3

CA2

CA1

CA6

CA5

▪ SCP	(one	per	domain):	
•Used	for	management	
•Signed	by	long-term	CAs’	keys	
•Describes	MSCs	and	connections:	
▪Who	is	trusted	by	Domain	(list	of	trusted	CAs	and	Logs)?	
▪When	should	MSC	be	accepted?	
▪ Security	parameters	of	connection	
▪ Failure	scenario	(errors	handling)	
▪ Inheritance	(to	enforce	subdomains)	
▪ How	can	SCP	be	updated?		

•SCP’s	key	can	be	stored	off-line	

▪ MSC	(many	per	domain):	
•Used	for	TLS	connection	setup	
•Must	be	signed	by	SCP’s	key

15

SCP and MSC Creation

a.com

a.com’s
 SCP

CA4

CA3

CA2

CA1

CA6

CA5

▪ SCP	(one	per	domain):	
•Used	for	management	
•Signed	by	long-term	CAs’	keys	
•Describes	MSCs	and	connections:	
▪Who	is	trusted	by	Domain	(list	of	trusted	CAs	and	Logs)?	
▪When	should	MSC	be	accepted?	
▪ Security	parameters	of	connection	
▪ Failure	scenario	(errors	handling)	
▪ Inheritance	(to	enforce	subdomains)	
▪ How	can	SCP	be	updated?		

•SCP’s	key	can	be	stored	off-line	

▪ MSC	(many	per	domain):	
•Used	for	TLS	connection	setup	
•Must	be	signed	by	SCP’s	key

16

a.com’s
 MSC

SCP Registration and Update

Log1

a.com

a.com’s
SCP

Log2

Log3

Log4

▪ Registration	and	update	
are	synchronized	among	
Logs	(these	operations	are	
infrequent)	

▪ Update	must	be	be	
compliant	with	update	
parameters	of	current	SCP

17

SCP Reg/Upd

Confirmation

(1)
(2)

(3)

Auditor

observe

MSC Registration and Revocation

Log1

a.com

a.com’s
MSC

Log2

Log3

Log4

▪ Registration	and	
revocation	does	not	
require	any	
synchronization

18

MSC Reg/Rev

Confirmation

observe

Auditor

a.com’s
MSC

Append-Only Log
▪ Log	(on	demand)	can	prove:	
▪ What	is	current	SCP	for	a	
Domain	

▪ That	MSC	is	logged	and	
(not)	revoked	

▪ That	one	snapshot	of	the	log	
is	an	extension	of	another

19

MSC validation 

▪ Client	checks	if:	
•MSC	and	SCP	are	logged	
•MSC	is	not	revoked	
•MSC	is	compliant	with	SCPs	

▪ Client	can	contact	Auditor	to	verify	Log’s	proofs

20

inf.ethz.ch

Client

Log

(every 2h)
proof request

proofs

Auditor

(periodically) synchronize

MSC validation 

▪ Client	checks	if:	
•MSC	and	SCP	are	logged	
•MSC	is	not	revoked	
•MSC	is	compliant	with	SCPs	

▪ Client	can	contact	Auditor	to	verify	Log’s	proofs

21

inf.ethz.ch

Client

Log

proofs

MSC, SCPs (inf.ethz.ch, ethz.ch, ch), proofs

Auditor

(1a)

Saves SCPs

(1a)

(2)

(every 2h)
proof request

MSC validation 

▪ Client	checks	if:	
•MSC	and	SCP	are	logged	
•MSC	is	not	revoked	
•MSC	is	compliant	with	SCPs	

▪ Client	can	contact	Auditor	to	verify	Log’s	proofs

22

inf.ethz.ch

Client

Log

proofs

MSC, SCPs (inf.ethz.ch, ethz.ch, ch), proofs

Auditor

(1a)

Are proofs
correct ? Saves SCPs

(1a)

(2)
(3)

(every 2h)
proof request

Parameters Inheritance
▪ SCPs	can	have	parameters	that	are	inherited	by	subdomains	
(i.e.,	subdomains	have	to	adhere	to	them)	

▪ In	case	of	inheritance	parameter	can	only	be	changed		if	it	
makes	the	parameter	more secure

23

inf.ethz.ch's policy ethz.ch's policy ch's policy

CA={A,B,C,D,E}
SSL_SEC=Low
...

*CA={A,B,C,D}
*SSL_SEC=High
...

*CA={B,C,D,E,F,G}
*SSL_SEC=Medium
...

CA – list of trusted CAs
SSL_SEC – minimum security level of SSL/TLS connection
*PARAM – value is inherited by subdomains

Parameters Inheritance
▪ SCPs	can	have	parameters	that	are	inherited	by	subdomains	
(i.e.,	subdomains	have	to	adhere	to	them)	

▪ In	case	of	inheritance	parameter	can	only	be	changed		if	it	
makes	the	parameter	more secure

24

inf.ethz.ch's policy ethz.ch's policy ch's policy

CA={A,B,C,D,E}
SSL_SEC=Low
...

*CA={A,B,C,D}
*SSL_SEC=High
...

*CA={B,C,D,E,F,G}
*SSL_SEC=Medium
...

CA={A,B,C,D,E}
SSL_SEC=Low
...

Step 1

Parameters Inheritance
▪ SCPs	can	have	parameters	that	are	inherited	by	subdomains	
(i.e.,	subdomains	have	to	adhere	to	them)	

▪ In	case	of	inheritance	parameter	can	only	be	changed		if	it	
makes	the	parameter	more secure

25

inf.ethz.ch's policy ethz.ch's policy ch's policy

CA={A,B,C,D,E}
SSL_SEC=Low
...

*CA={A,B,C,D}
*SSL_SEC=High
...

*CA={B,C,D,E,F,G}
*SSL_SEC=Medium
...

CA={A,B,C,D,E}
SSL_SEC=Low
...

Step 1
CA={A,B,C,D,E}
SSL_SEC=High
...

Step 2

Parameters Inheritance
▪ SCPs	can	have	parameters	that	are	inherited	by	subdomains	
(i.e.,	subdomains	have	to	adhere	to	them)	

▪ In	case	of	inheritance	parameter	can	only	be	changed		if	it	
makes	the	parameter	more secure

26

inf.ethz.ch's policy ethz.ch's policy ch's policy

CA={A,B,C,D,E}
SSL_SEC=Low
...

*CA={A,B,C,D}
*SSL_SEC=High
...

*CA={B,C,D,E,F,G}
*SSL_SEC=Medium
...

CA={A,B,C,D,E}
SSL_SEC=Low
...

Step 1
CA={A,B,C,D,E}
SSL_SEC=High
...

Step 2
CA={A,B,C,D,E}
SSL_SEC=High
...

Final

Use Cases

27

*SSL_SEC=High
*FAIL_SSL_SEC=Hard
...

bank.com's policy

www1.bank.com
TLS 1.2

www2.bank.com
SSL 2.0

www3.bank.com
TLS 1.2

www4.bank.com
TLS 1.2

Client

Use Cases

28

*SSL_SEC=High
*FAIL_SSL_SEC=Hard
...

bank.com's policy
CA={CA1, CA2, CA4}
...

www.ethz.ch's policy

AttackerClient

ClientHello

ServerHello

CA4CA3CA2CA1
...

ClientHello

ServerHello

(1)
(2) (3)

(4)(5)

www.ethz.ch

www1.bank.com
TLS 1.2

www2.bank.com
SSL 2.0

www3.bank.com
TLS 1.2

www4.bank.com
TLS 1.2

Client

Properties
▪ Transform	weakest-link	security	into	security	of	the	selected	
trust	roots	
•Multi-Signature	Certificates	(MSCs)	by	default	instead	of	single	weakest	link	
• Impossible	to	create	valid	MSC	without	SCP’s	private	key	(offline)	

▪ Expressiveness	and	trust	agility	
•Control	over	certificates,	connections,	and	error	handling	
•Only	selected	entities	are	trusted,	and	all	entities	are	verifiable	

▪ Transparency	
•Policies,	certificates,	and	revocations	are	logged	
•Potential	attacks	would	be	visible

29

Implementation
▪ SSL/TLS	is	unmodified	
▪ SCPs	and	MSCs	are	implemented	as	concatenation	of	standard	
certificates	

▪ Optimizations	(SCPs’	caching,	MSC/SCP	compression)	
▪ Performance:

30

Log’s side:
SCP registration/update: 10ms
MSC registration: 7ms
MSC revocation: 5ms
Proof request: 9ms

Browser’s side:
Complete validation: 3ms

Legacy certificate’s validation
in similar setting takes 0.7ms

Incremental deployment
▪ Participants	get	benefits	
▪ Others	have	no	disadvantage	
▪ One	policy	can	cover	all	subdomains	
▪ CAs	without	any	changes	
▪ MSC’s	implementation	works	with	legacy	software

31

Remaining Challenges
▪ Corner	cases:	two	compromised	parties	are	enough	to	launch	
a	successful	attack	
▪ An	adversary	is	able	to	compromise	a	CA	and	a	log	at	the	same	time,	and	
▪ the	attacked	client	visits	the	targeted	website	for	the	first	time.	

▪ Protection	from	and	detection	of	compromised	logs	
▪ How	to	protect	clients	when	logs	and	CAs	are	compromised?	
▪ How	to	make	sure	that	logs	behave	correctly?	

▪ Currently	auditors	can	only	detect	attacks	(cannot	prevent	them)

32

ARPKI: Attack Resilient PKI [CCS’14, TDSC’16]
▪ Resilience	for	n-1	compromised	entities	
▪ n	is	a	parameter	(security	vs.	efficiency)	
▪ Message	flow	with	CAs	active	in	“on-line”	actions	
▪ Confirming	is	extended	to	n	parties	(one	party	is	log	and	n-1	parties	are	
different	CAs)	

▪ Co-design:	formal	specification	and	implementation	are	developed	from	a	
single	design	document	

33Client

CA1

Domain

Auditors (optional)

Logs

CA2

Log1

10
11

1
9

2

3
4

5
6

7

8

ARPKI: Operations

34

ARPKI: Formal verification
▪ Proof	goal:	Whenever	(i)	a	domain	A	has	been	registered	initially	by	an	honest	party	with	
a	certificate;	and	(ii)	later	a	browser	accepts	a	connection	to	domain	A	with	some	
certificate	(which	may	have	been	updated	and	hence	differ	from	the	original	certificate),	
then	the	adversary	does	not	know	the	private	key	for	that	certificate.	

▪ Tamarin	prover	
▪ Full	model	is	about	54000	characters	–	23	rules,	1k	loc	
▪ 32GB+16	Cores	(Xeon	2.7GHz)	prove	below	lemma	in	80	min	

35

End-entity PKI in SCION
▪ SCPs	confirmed	by	n	trusted	entities	(the	parameter	is	set	by	
each	SCION	ISD)	
▪ SCPs	have	the	same	properties	as	certificates	in	ARPKI	

▪ MSCs	logged,	non-revoked,	and	compliant	with	policies

36

Efficient Gossip Protocols for Verifying the
Consistency of Certificate Logs [CNS’15]

▪ Misbehavior	detection	(beyond	n	trusted	entities)	
•Who watches the watchman? Equivocation attack (compromised PKI)
•How	to	detect	it?	
•Constraints:	scalability,	infrastructure,	privacy,	efficiency,	effectiveness

37

Log

Ca

Ca is logged
Ca is not logged

Efficient Gossip Protocols for Verifying the
Consistency of Certificate Logs [CNS’15]

▪ Misbehavior	detection	(beyond	n	trusted	entities)	
•Who watches the watchman? Equivocation attack (compromised PKI)
•How	to	detect	it?	
•Constraints:	scalability,	infrastructure,	privacy,	efficiency,	effectiveness	
▪ Idea: Clients exchange information using natural HTTPS

traffic

38

facebook.com
twitter.com

google.com

Further Reading
P.Szalachowski, S.Matsumoto, A.Perrig “PoliCert: Secure and Flexible TLS Certificate
Management”, In Proc. of the ACM CCS, 2014

D.Basin, C.Cremers, THJ.Kim, A. Perrig, R.Sasse, P.Szalachowski „ARPKI: Attack Resilient
Public-key Infrastructure.” In Proc. of ACM CCS, 2014.

L.Chuat, P.Szalachowski, A.Perrig, B.Laurie, E.Messeri „Efficient Gossip Protocols for
Verifying the Consistency of Certificate Logs” In Proc. of IEEE CNS, 2015

D.Basin, C.Cremers, THJ.Kim, A. Perrig, R.Sasse, P.Szalachowski „Design, Analysis, and
Implementation of ARPKI: an Attack-Resilient Public-Key Infrastructure.” In IEEE TDSC,
2016

A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat. „SCION: A Secure Internet
Architecture.” Springer, 2017. (Chapter 4)

39

