

Do we need a new Internet? Part 2: Motivations for Change

Adrian Perrig Network Security Group, ETH Zürich

SCION

Worst Internet Security Problems?

- Malware (worms, viruses, etc.)
- Spyware
- Ransomware
- APT
- HTTP-based attacks
- Spam, phishing
- Compromised IoT devices

Most Fundamental Internet Security Issue

- Basic Internet service: deliver data
- Most fundamental security issue: network availability
- Main attack is preventing communication, for example:
 - Disrupting routing system
 - Address hijacking
 - DDoS attack

BGP: Border Gateway Protocol

- Designed in 1989 by Lougheed and Rekhter [RFC 1105]
- - packets to the destination
- know about

			• 1	
EI	HZ	zur	<i>^rICl</i>	

B.G.F.	Sheet ing the	1 102	·
here's	hildere tour	2 types (mareles)	a, uniteres
+79-53	- 1 	proves is annually 1	a mbela
	anthinkow - # progens - #		4 -ph6
	7 45 =	2 4/4	and the p
	1 24 - 1	t ayla	
	attend - 4 4-165 - 8	(not and is yelds about the body)	situity
	and type whe	1 4,10	
	advision	umidite	e morten
the les	e les a	1.16	C ICP A
-	East he asher	4 4.44	a upe not
of the	autra 1	2 4.40	T. Ambil 8
-1in	and at 15	t auto	T. amil un
Arra a	Santin	1 byte 2 coppet - matt	
	[245 #	2 type 5 times	
and trading	an aparte	2 \$yha	

BGP is a fundamental protocol to enable Internet communication BGP is like the postal service: it finds the path to send network

Perhaps the most important network protocol many people don't

Fundamental Limitations of BGP and BGPSEC

- Availability

 - Frequent periods of unavailability when paths change Slow convergence during iterative route computation Susceptible to attacks and misconfigurations, sometimes
 - resulting in global outages
- Transparency: poor path predictability and reproducibility
- Control: Almost no path choice by end points Trust: Uses very few trust roots (RPKI / BGPSEC)
- - Single points of failure

ETHzürich

Internet Attacks and Problems 1/3 **BGP / Control Plane Issues**

- Lack of fault isolation
 - Error propagation, potentially to entire internet, disruption of flows outside domain
 - Adversary can attract flows outside domain (prefix hijack/blackhole attacks)
 - Black art to keep BGP stable, manual rule sets, unanticipated consequences
- Lack of scalability, amount of work by BGP is O(N), N number of destinations
 - Path changes need to be sent to entire internet
- Dramatically higher router overhead during periods of route instability
 - Increased number of routing updates during DDoS attacks
- Short-term loops during periods of convergence, leading to outages during a few seconds (Katabi, "can you hear me?") Intermittent routing loops during BGP convergence, need TTL to avoid packet looping
- Slow route convergence
 - Convergence attack
 - Network may require minutes up to tens of minutes to converge
- Lack of freshness for BGP update messages
- Cannot express any policies based on source of traffic
- Only single path, cannot use multipath
- No separation of routing and forwarding, forwarding may suddenly stop during route changes

ETHzürich

Internet Attacks and Problems 2/3 BGPsec Issues

- Slower convergence than BGP
- Prefixes cannot be aggregated, much higher overhead
- RPKI needs connectivity to verify revocation status of a certificate, thus introducing a circular dependency between routing and cert validation
- Single root of trust for AS and address certificates, which leads to a powerful kill switch
- Path withdrawals are not secure, path oscillations can be induced by repeatedly announcing / withdrawing path
- New attacks are possible
 - Route flap dampening-based attacks:
 Y. Song, A. Venkataramani, and L. Gao. Identifying and addressing protocol manipulation attacks in secure BGP. ICDCS, 2013.
 - Q. Li, Y-C. Hu, and X. Zhang. Even Rockets Cannot Make Pigs Fly Sustainably: Can BGP be Secured with BGPsec? SENT 2014.

Internet Attacks and Problems 3/3

IP / Data Plane Issues

- Expensive forwarding table lookup for each packet, power-intensive if implemented with TCAM
- Bursting routing tables, especially with IPv6
- Lack of route transparency
- Lack of predictability for path availability
- Lack of route choice/control by senders and receivers

IP / BGP / Misc. Issues

- No path predictability due to inconsistency between routing table and BGP updates
- No isolation between control and data planes (routing and forwarding)
 - By attacking routing, prevent forwarding to work correctly
- Huge TCB (entire internet)
- Single root of trust for DNSsec, leads to kill switch
- Unauthenticated ICMP
- No clean global framework for PKI
- No network mechanisms to defend against DDoS attacks
- No path verifiability
- No mechanism to authenticate the source, easy to perform source IP spoofing

ETHzürich

What Solutions are Ready?

- problems?
- Potential solutions many people think of:
 - SDN
 - Blockchain
 - Cloud computing

Since the Internet is so important and people are aware of the problems, surely solutions are ready to solve the

Proposed Future Internet Architectures

- General FIAs
 - XIA: enhance flexibility to accommodate future needs
 - MobilityFirst: empower rapid mobility
 - Nebula (ICING, SERVAL): support cloud computing
 - NIMROD: better scale and flexibility for Internet
 - NewArch (FARA, NIRA, XCP)
- Content-centric FIAs NDN, CCNx, PSIRP, SAIL / NETINF
- Routing security S-BGP, soBGP, psBGP, SPV, PGBGP, H-NPBR
- Path control MIRO, Deflection, Path splicing, Pathlet, I3, Segment Routing
- Others
 - SDN: flexible intra-domain networking
 - ChoiceNet, HLP, HAIR, RBF, AIP, PFRI, POMO, RINA, ANA, ...

nd computing or Internet

Absence of Inter-domain Routing Innovation

- Surprising fact: little changed in inter-domain routing over the past 15 years [Ken Calvert, Keynote @ ICNP 2016]
- Observation: Internet innovation happened at lower and upper layers, or in intra-domain routing
 - 7 Application
 - 4 Transport
 - 3 Internet

2/1 Link

Explanations why Problems are not Addressed

threats

Titanic scenario: we are overly confident that everything is fine Boiling frog scenario: we don't realize severity of escalating

Sweat and Human Ingenuity

 Perhaps main reason why the Internet is not changing: sweat and human ingenuity of thousands of clever system and network administrators who are working hard to keep the Internet running

Belief that Internet is Immutable

- BGPSEC, DNSSEC, etc.
- However, benefits are limited, esp. for early deployers Our goal: provide many benefits, even for early adopters, such that
- one cannot turn back

Evidence appears overwhelming that Internet is immutable: IPv6,

Evolutionary vs. Revolutionary Change

- Revolutionary approach is necessary
 - Some problems are fundamental, not fixable through evolution
- Revolutionary approach is desirable
 - A fresh redesign can cleanly incorporate new mechanisms
- Revolutionary technology change is easy through evolutionary deployment
 - If IP is relegated to provide local (intra-domain) communication, only a small fraction of border routers need to change
 - Simultaneous operation with current Internet possible
 - Strong properties provide motivation for deployment

SCION

1	1	5
4	-	J

Can we really change the Internet?

For More Information ...

- Image: please see our web page: www.scion-architecture.net
- Chapter 1 of our book "SCION: A secure Internet Architecture"
 - Available from Springer this Summer 2017 PDF available on our web site

SCION

