PISKES: Pragmatic Internet-Scale Key-Establishment System

Benjamin Rothenberger*, Dominik Roos', Markus Legner*, and Adrian Perrig*’

*ETH Zurich, Switzerland

T Anapaya Systems

{benjamin.rothenberger,markus.legner,adrian.perrigl@inf.ethz.ch,roos@anapaya.net

ABSTRACT

Denial-of-service attacks have become increasingly prevalent in
the Internet. In many cases they are enabled or facilitated by the
lack of source authentication—it is often easy for an attacker to
spoof its own IP address and thus launch reflection attacks or evade
detection. There have been attempts in the past to resolve this issue
through filtering or cryptography-based techniques; however, there
is still no sufficiently strong system in place today—all proposals
either provide weak security guarantees, are not efficient enough,
or lack incentives for deployment. In this paper we present PISKES,
a pragmatic Internet-scale key-establishment system enabling first-
packet authentication. Through the PISKES infrastructure, any host
can locally obtain a symmetric key to enable a remote service to per-
form source-address authentication. The remote service can itself
locally derive the same key with efficient cryptographic operations.

PISKES thus enables packet authentication for a wide variety of
systems including high-throughput applications like DNS. We have
implemented a prototype system that enables a DNS server to ver-
ify the source of every received packet within 85 ns, which is over
220 times faster than a system based on asymmetric cryptography.
PISKES has been developed for the SCION secure Internet archi-
tecture but is also applicable to today’s Internet. With its strong
source-authentication properties and highly efficient operation it
has the potential to finally bring network-layer authentication to
the Internet.
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1 INTRODUCTION

Many of the widespread problems in today’s Internet stem from
the lack of authentication; in particular, denial-of-service (DoS)
attacks often use reflection and amplification techniques enabled
by connectionless protocols like DNS or NTP and the possibility
of source-address spoofing [36, 53, 67]. This issue has been tackled
in the past through several different approaches: source-address
filtering at the network edge [24], cookie-based challenge-response
systems [14, 22], or client certificates and asymmetric cryptogra-
phy [32, 62]. Unfortunately, these systems provide relatively weak
guarantees (filtering and cookies) or introduce a substantial over-
head and open up additional DoS vulnerabilities (asymmetric cryp-
tography). We describe several widely known systems and their
downsides in §3.1 and provide an extensive overview in §8. We
conclude that to obtain strong guarantees with high efficiency on
a per-packet basis, an authentication system based on symmetric
cryptography is required. However, this approach introduces its
own challenges: in order to authenticate already the first packet
received from a host, we cannot rely on in-band protocols to negoti-
ate keys; on the other hand, storing symmetric keys for all potential
senders on each server is infeasible in an Internet-scale system.

Recently, a system to dynamically (re-)create keys for any host,
DRKey, has been proposed in the context of path-validation system
OPT [41] and the SCION Internet architecture [58]. In this work, we
extend the ideas from DRKey to build PISKES, a pragmatic Internet-
scale key-establishment system, which enables packet authentica-
tion for various services both in SCION and today’s Internet. The
core property we strive for is to enable a service to rapidly derive a
symmetric key to perform network-address authentication for an
arbitrary source host. This will enable services such as DNS or NTP
to instantly authenticate the first request originating from a client,
thus providing a defense against reflection-based DoS attacks. In
addition, the key can be used to authenticate the payload of the
request and reply, which is particularly useful for DNS which by
default does not include any authentication. Our PISKES prototype
system enables the server to derive the symmetric key within two
AES operations, which corresponds to 18 ns on a commodity server
platform, and authenticate the first packet within 85 ns on commod-
ity hardware. It is clear that such speeds cannot be achieved with
protocols based on asymmetric cryptography that require multiple
messages to be exchanged to establish a shared session key. For
example, PISKES outperforms RSA 1024-based source authentica-
tion by a factor of more than 220, even under the assumption that
the service already knows the client’s public key. In addition to
providing highly efficient network address verification, PISKES can
also be used to authenticate Diffie-Hellman (DH) keys in a protocol
such as TCPcrypt [8].
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The main ideas behind PISKES are as follows. Autonomous sys-
tems (ASes)! can obtain certificates for their AS number and IP
address range from a public-key infrastructure (PKI)—SCION’s
control-plane PKI [66] in a SCION deployment or the Resource
Public Key Infrastructure (RPKI) [11] in today’s Internet. PISKES
uses such a PKI to bootstrap its own symmetric-key infrastructure.
PISKES key servers are set up in all deploying ASes and contact
each other on a regular basis to set up symmetric keys between
pairs of ASes. These symmetric keys are then used as a root keys to
efficiently derive a hierarchy of symmetric per-host and per-service
keys. Thanks to a hardware implementation of the AES block cipher
on most modern CPUs (Intel, AMD, ARM), such a key derivation is
about four to seven times faster than a single DDR4 DRAM memory
fetch [28, 50]. Our approach ensures rapid key derivation on the
server side, whereas a slower key fetch is required by the client
to a local key server. This one-sidedness makes the source authen-
tication for the receiving side as efficient as possible and ensures
that PISKES does not introduce new DoS attack vectors. PISKES
is incrementally deployable and provides immediate benefits to
deploying entities.

A fundamental tradeoff in PISKES is the additional trust require-
ments of end hosts in their local AS: as the key server is able to
derive the end-to-end symmetric key, this key cannot be used di-
rectly to achieve secrecy between two end hosts. However, the
PISKES keys can be used for authentication that the source host
indeed belongs to the claimed AS, which suffices to resolve DoS
attacks as we demonstrate in this paper.

The main contributions of this work are the following:

e We develop a key-establishment infrastructure using a key hi-
erarchy and dynamic key derivation as a scalable and highly
efficient approach for global key establishment.

e We describe how PISKES can be integrated into the SCION
architecture and deployed in today’s Internet.

o We formally verify the security guarantees of the proposed
key-establishment protocol using the Tamarin prover tool.

o We describe how first-packet authentication can be achieved
based on this key hierarchy and provide a prototype imple-
mentation of PISKES that demonstrates its efficiency.

2 PROBLEM DEFINITION

Our goal in this work is to design a system for highly efficient
global first-packet authentication. We emphasize that we aim at
providing packet authentication at the network layer based on the
network address (i.e., the IP adress in the current Internet or the
combination of AS number and local address in SCION), and not
based on a higher-level identity such as a domain name or web-
server identity. This section describes the security properties we
strive to achieve and the adversary model we consider.

2.1 PISKES Design Goals

2.1.1 Functional and Security Properties. We aim to design a sys-
tem that allows servers to authenticate the source and optionally
the payload of packets they receive. In particular, already the first
packet received from a particular source should be authenticated,

!We use the term AS for an independently administered network domain, e.g., an
Internet service provider, a content distribution network, or a university network.

without relying on prior communication between the two par-
ties (e.g., through handshake messages). To achieve the authen-
tication properties, the cryptographic keys exchanged with the
key-establishment protocol must remain secret, and entity authen-
tication of participating parties must be enforced.

2.1.2  Efficiency & Scalability. A system that enables applications
requiring high bandwidth and low latency must facilitate high-
speed processing. To that end, it must use efficient operations to
keep the processing and communication overhead for entities mini-
mal. A simple calculation underscores the importance of efficiency:
Consider a system that is required to authenticate packets with a
bandwidth of 10 Gbit/s. If we assume minimal-size (64 B, 84 B in-
cluding preamble and inter-frame gap) packets, this corresponds
to processing 14.9 million packets per second or one packet every
67.2ns. Even considering pipelining and parallelism, this implies
that a single packet needs to be authenticated within several hun-
dreds of nanoseconds, ruling out asymmetric cryptography, which
is orders of magnitude slower [23].

In addition to the processing efficiency, the communication over-
head and required state introduced by the system must remain
small for a global-scale deployment. In particular, it is infeasible to
require a server to store symmetric keys for all several billion other
hosts in the Internet.

2.1.3  Deployability. The system should be deployable on both the
current Internet and future Internet architectures such as SCION.
Deployment of the system should add minimal complexity to the
existing Internet infrastructure. Traffic from legacy entities should
not be affected by the deployment of the system. Early adopters
should instantly benefit from deployment.

2.2 Adversary Model

We consider an adversary that can deviate from the protocol and
attempt to violate its security goals. As a basis, we assume the
Dolev-Yao model [20], where the adversary can reside at arbitrary
locations within the network. He can passively eavesdrop on mes-
sages and also actively tamper with the communication by injecting,
dropping, delaying, or altering packets. However, the adversary
has no efficient way of breaking cryptographic primitives such as
signatures, pseudorandom functions (PRFs), and message authen-
tication codes (MACs). Furthermore, we assume that there exists
a secure channel between end hosts and a key server within the
same AS (see §7.3.5 for further details). Assuming the mentioned
capabilities, the goal of the adversary is to obtain cryptographic
keys of other parties to forge authenticated messages.

By compromising an entity, the adversary learns all crypto-
graphic keys and settings stored. He can also control how the
entity behaves, including fabrication, replay, and modification of
packets. We consider compromises of both end hosts and network
nodes (including key servers).

3 BACKGROUND

In this section, we describe several previous attempts at provid-
ing authentication in the Internet (§3.1) and proposals for global
symmetric-key distribution (§3.2) and discuss why all of them are
insufficient to address the problems introduced in the previous



section. Here we focus on several representative and well-known
systems—an exhaustive overview of related work is provided in §8.

3.1 Authentication Systems

3.1.1 Source Address Validation. Source address validation (SAV),
also known as best current practice (BCP) 38 [24], is not an au-
thentication system in the strict sense but is still often considered
a solution to source-address spoofing in the Internet. With SAV,
ASes monitor traffic originating from their own hosts and filter
out packets with a source address outside their own address space.
However, due to incentive misalignments,? the adoption of SAV
has been slow and a recent study found that many ASes still do
not employ it in their networks [46]. Furthermore, it is impossible
to determine from the outside if a particular AS employs SAV or if
a particular packet originated from an AS that employs SAV as it
does not carry any proof of authenticity. For an external service it is
therefore impossible to filter traffic based on whether it originated
from an AS employing SAV. Even with a full deployment of SAV
in the Internet, on-path adversaries would still be able to spoof
the source of packets and SAV thus provides very weak security
properties. There exists a wide range of other filtering techniques
with similarly limited properties [4, 21, 34, 43, 56].

3.1.2  Cookies. Several protocols, including TLS [63], IKEv2 [38],
and DNS [22] define a cookie mechanism to provide a weak form
of source authentication. The basic mechanism for these systems is
similar: Upon receiving a request, the server replies to the sender
with a cookie that encodes the request parameters without allo-
cating state or processing the request. Only after receiving this
cookie back from the source, the request is processed. Compared
to SAV, cookies have the advantage that they can be enforced by
services without relying on Internet service providers (ISPs) to
perform filtering. However, cookies introduce additional latency
of one round-trip time (RTT) and are still susceptible to spoofed
packets by on-path adversaries.

3.1.3  Client Certificates. Strong authentication properties can be
achieved through asymmetric cryptography and client certificates.
These are supported, for example, by TLS [63] and DTLS [64]. How-
ever, authentication using client certificates requires expensive
asymmetric cryptography in violation of our efficiency require-
ments (§2.1.2). Furthermore, these systems cannot authenticate the
first packet and are vulnerable to signature-flooding attacks.

3.2 Key-Distribution Systems

3.2.1 Passport. Passport [44] provides mechanisms to establish
shared keys between any pair of ASes based on a DH key exchange
piggybacked on BGP messages. It relies on a secure routing system
to ensure the authenticity of the shared keys, which can subse-
quently be used to authenticate the source of packets at the network
layer. For our purposes (see §2), Passport by itself is inadequate for
several reasons: (i) it only enables authentication at the AS level,
(ii) it requires authenticating systems to keep a store of symmetric
keys for all ASes (currently approximately 68 000 [6]), (iii) it has

2The costs of deploying SAV are paid by an AS itself while its benefits are experienced
by the rest of the Internet.

Table 1: Notation used in this paper.

|| bitstring concatenation
A,B  autonomous systems (ASes) identified by AS number (ASN)
Hy, Hg  end hosts identified by IP address
KSa, KSg  key servers located in a specific AS
SV4  AS A’slocal secret value
S Vf; AS A’s local secret value for protocol p
K?  symmetric key derived (indirectly) from SV#
Ka_p  symmetric key between ASes A and B, derived from SV,

K?

g Symmetric key between ASes A and B for protocol p

%P symmetric key between AS A and end host Hp in AS B for pro-
A-BHp  tocol p

symmetric key between end host H4 in AS A and end host Hg

KP
in AS B for protocol p

A:Hp—B:Hg
H(:) non-cryptographic hash operation
MACKk (-) message authentication code using key K
PRFk(:)  pseudorandom function using key K
{X}pk, public-key encryption of X using AS A’s public key

{X}pk;  public-key signature over X using AS A’s private key

no mechanism to delegate keys to certain services. Other systems,
such as Kerberos [54], are reviewed in §8.

3.22 DRKey. Dynamically Recreatable Keys (DRKeys) have been
proposed to efficiently derive and distribute symmetric shared keys
between routers and end hosts in the context of Origin and Path
Trace (OPT) [41], a system providing path validation. The system
has later been generalized and embedded in the SCION Internet
architecture [58]. DRKey’s fundamental idea is that each AS A
can efficiently derive a key hierarchy starting from a secret value
SV4, providing keys shared with other ASes, K4_,p, and end hosts,
Ka—B:Hg- By periodically exchanging the keys K4_,g between
ASes, from which host-level keys can be derived, DRKey enables
an efficient global distribution of symmetric keys.

DRKey fulfills most of our requirements to a key-distribution
system and thus provides the basis of PISKES. However, PISKES
refines and extends the existing DRKey system [58] in several sig-
nificant ways: (i) PISKES modifies DRKey to make it applicable to
the current Internet in addition to SCION; (ii) it adds efficient mech-
anisms to delegate specific keys to services in an AS; (iii) it specifies
many of its important practical aspects in further detail; and (iv) it
fixes recently discovered vulnerabilities of DRKey’s key-exchange
mechanisms due to an inadequate application of signatures [33].

4 KEY DERIVATION AND DISTRIBUTION

In this section, we present the key-derivation and -distribution
mechanisms used for PISKES. This is based on the DRKey sys-
tem [58], but we significantly extend it with additional delegation
mechanisms and other optimizations, see also §3.2.2. Furthermore,
we also formally model and verify security properties of this key-
distribution system, see §7.1.

We first provide a high-level overview to convey an intuition
of the operation of our system. Figure 1 shows the basic use case
of PISKES, where a host Hy in AS A desires to communicate with
a server Sg in AS B, and Sg wants to authenticate the network



Figure 1: Basic topology and key-establishment procedure
for communication between an end host H4 in AS A and a
server Sg in AS B. ASes A and B have deployed the key servers
KS4 and KSp, respectively.

address of Hy using a symmetric key. Table 1 lists the notation used
in the remainder of this paper.

ASes that want to benefit from PISKES need to set up one or
multiple key servers. We assume that ASes A and B have deployed
KS4 and KSp, respectively. Each AS randomly selects a local secret
value, SV, and SVp, which is only shared with trustworthy entities
(in particular, the key servers) in the same AS, it is never shared
outside the AS. Since hosts are typically not trustworthy, they
would not obtain the local secret value; however, in some cases a
trusted router or server could obtain it as we are going to assume
in this overview for simplicity—later we describe how to delegate
symmetric values to less trusted services. The secret value will serve
as the root of a symmetric-key hierarchy, as illustrated in Figure 2,
where keys of a level are derived from keys of the preceding level 3
In PISKES, the keys are derived using an efficient PRF [37, p. 331].

The key derivation used by KSg in our example is Kp_,4 =
PRFgsy; (A). Thanks to the key-secrecy property of a secure PRF,
Kp_, 4 can be shared with another entity without disclosing SVp.
Note that the arrow notation indicates the secret value used to
derive the key. Thus, Kg_,. would typically be used if AS B is on
the performance-critical side, where * denotes the set of remote
ASes. To continue with our example depicted in Figure 1, KS4 will
prefetch keys K., 4 from key servers in other ASes, including
Kp_,4 from KSg. In Figure 1, this action is illustrated with the
arrows labeled 1a and 1b. Also, we assume that server Sg is trusted
and can thus obtain the secret value SVg, indicated with the arrows
labeled 2a and 2b. When Hy4 desires to authenticate to Sg, it contacts
its local key server KS4 and requests key Kp.s; A1, , Which KSy
can locally derive from Kp_, 4 (arrows 3a and 3b). H4 can now
directly use this symmetric key for authenticating to Sg (arrow 4).

The important property of PISKES is that Sg can rapidly derive
KB:sg—A:H,» by using SVp and performing two PRF operations.
This illustrates an important design aspect of PISKES: The one-
wayness of the key-derivation function allows a key server to del-
egate key derivation to specific entities. Thus, the key-derivation
process exhibits an asymmetry, meaning that the delegated entity
Sp can directly derive a required key, whereas host Hy is required
to fetch the corresponding key from its local key server. As opposed
to other systems that rely on a dedicated server for key generation
and distribution (such as Kerberos [54]), this delegation mecha-
nism allows entities to directly obtain a symmetric key without
communication to the key server.

3We emphasize that this key hierarchy is different from a PKI key hierarchy: in PISKES,
higher-level keys are derived from a lower-level key, whereas in PKI hierarchies private
keys sign public-key certificates of the next entity in the certificate chain.

SVa SVl othlevel

| '
Ka—s Ka-c kﬁ B 1st level

b N | Y
Kz—us KZ—>B:HB /‘z:HA—>B:HB ~£:HA—>B:H3"' 2nd level

Figure 2: PISKES multi-level key hierarchy derived by AS A.
The notation K; — K> indicates that K, is derived from K;
through a pseudorandom function.

4.1 Assumptions
The design of PISKES is based on the following assumptions:

o There exists an AS-level PKI, that authenticates the public
key of an asymmetric key pair (PKg, PK; 1) for each partici-
pating AS E and certifies its network resources; we rely on
the SCION control-plane PKI [66] certifying AS numbers
for a deployment in SCION and on RPKI [11] certifying AS
numbers and IP address ranges for a deployment in today’s
Internet.

o To verify the expiration time of keys and messages, PISKES
relies on synchronization among ASes with a precision on
the order of several seconds. This can be achieved using a se-
cure time-synchronization protocol such as Roughtime [27].

e We assume that there exists an authentication mechanism
for end hosts within an AS. This is needed for access control
and is further discussed in §7.3.5.

4.2 Key Hierarchy

The PISKES key-establishment framework uses a key hierarchy
consisting of three levels, illustrated in Figure 2.

4.2.1 Oth-Level (AS-internal). On the zeroth level of the hierarchy,
each AS A randomly generates a local AS-specific secret value SV4.
The secret value represents the per-AS basis of the key hierarchy
and is renewed frequently (e.g., daily). In addition, an AS can gen-
erate protocol-specific secret values

SVE = PRFsy, (“p”) (1)

for an arbitrary protocol p, where “p” is its ASCII encoding. The
purpose of these values is that they can be shared with specific
services, such as DNS servers, that cannot be trusted with SV4
but should still be able to efficiently derive additional keys. As
this construction introduces additional communication and storage
overhead, only widely used protocols such as DNS or NTP would
have their own secret values.

4.2.2 Ist-Level (AS-to-AS). By using key derivation, an AS A can
derive different symmetric keys using a PRF (e.g., based on AES)
from the single local secret value SV or a protocol-specific secret
value SVX . These derived keys, which are shared between AS A
and a second AS B, form the first level of the key hierarchy and are
called first-level keys:

Ka—p = PRFsy, (B). (2

The input to the PRF is the (globally unique) AS number of AS
B. If a protocol-specific secret value SV, exists, protocol-specific



Table 2: Second-level keys and their corresponding requests
to the local key server (EH = end host).

Desc. Key Request Format
AS — AS K% =PRFALp("p") {0, req.ID, p, A, B}
AS—EH K . =PRFA_p(“p” || Hp) {1, req.ID, p, A, Hg }

EH—>EH K?

wia—pry = PRFA-B(p” || Ha || Hp) {2, req.ID, p, Ha, Hp }

first-level keys can be derived as

Kb o= PRF gy (B) 3)
The general first-level keys and those derived from protocol-specific
secret values are periodically exchanged between key servers of
different ASes, see §4.3.1.

Note that, instead of deriving first-level keys from a common
secret value, it is also possible to use the keys defined by Passport.
Protocol-specific first-level keys could then be derived from the
standard first-level keys. However, this approach would require all
entities that want to use PISKES to store and frequently update a
key for each AS instead of being able to derive them from a single
secret value. In the remainder of the paper, we therefore focus
on the DRKey-inspired key hierarchy with explicit key-exchange
messages.

4.2.3 2nd-Level (AS-to-host, host-to-host). Using the symmetric
keys of the first level of the hierarchy, second-level keys are derived
to provide symmetric keys to hosts within the same AS. Second-
level keys can be established between a pair of AS infrastructure
nodes (such as border routers or servers), end hosts, or a combina-
tion of both. For example, a key between end hosts Hy in AS A and
Hpg in AS B is derived as

K: o pan, = PRFK, s (7 | Ha || Hp)., @)

where H4 and Hp represent IP addresses of end hosts. For other
second-level keys (e.g., between an AS infrastructure node and an
end host), the derivation process is slightly adapted, see Table 2. If
a protocol-specific first-level key exists, second-level keys can be
derived as

" o
Koty —piy = PRFge_ (Ha |l Hp). )

4.3 Key Establishment

4.3.1 First-Level Key Establishment. Key exchange is offloaded to
the key servers deployed in each AS. The key servers are not only re-
sponsible for first-level key establishment, they also derive second-
level keys and provide them to hosts within the same AS.

To exchange a first-level key, the key servers of corresponding
ASes perform the key exchange protocol. The key exchange is
initialized by key server KSg by sending the request

req=A|| B || val_time || 7 || [p], (6a)
KSp — KSa:  req || {req}px;, (6b)

where 7 denotes a timestamp of the current time and val_time
specifies a point in time at which the requested key is valid. If an
optional protocol p is supplied, the protocol-specific first-level key
KP s requested, otherwise the general key K4, . The requested

A—B
key may not be valid at the time of request, either because it already

expired or because it will become valid in the future. For example,
prefetching future keys allows for seamless transition to the new
key. The request token is signed with B’s private key to prove
authenticity of the request.*

Upon receiving the initial request, KS4 checks the signature for
authenticity and the timestamp for expiration. If the request has
not yet expired, the key server KS4 will reply with an encrypted
and signed first-level key derived from the local secret value SV4
or, if an optional protocol p was supplied in the request, SVIf :

PRF B), if t included
_ SVj"( ), if request included p (72)
PRFsy,(B), otherwise
repl = {A || key}px;, || exp_time || (7b)
KSp — KSp: repl || {repl}pK; (7¢)

Once the requesting key server KSg has received the key, it shares it
among other local key servers to ensure a consistent view. Each key
server can now respond to queries by entities within the same AS
requesting second-level keys. Alternatively, the proposed first-level
key exchange protocol could also make use of TLS 1.3 with client
certificates to secure the key exchange [63].

Allfirst-level keys for other ASes are prefetched such that second-
level keys can be derived without delay. However, on-demand key
exchange between ASes is also possible. For example, in case a key
server is missing a first-level key that is required for the derivation
of a second-level key, the key server initiates a key exchange. ASes
that contain a large number of end hosts benefit from prefetching
most first-level keys, as they are likely to communicate with a
large set of destination ASes. In today’s Internet there exist around
68000 active ASes [6]. Thus, setting up symmetric keys between all
entities requires minor effort and state, see §7.2 for further details.
To avoid explicit revocation, the shared keys are short-lived and
new keys are established frequently (e.g., daily). Subsequent key
exchanges to establish a new first-level key can use the current key
as a first line of defense to avoid signature-flooding attacks.

4.3.2  Second-Level Key Establishment. End hosts request a second-
level key from their local key server with the following request
format (Table 2 provides specific examples):

{type, requestID, protocol, source, destination}. (8)

An end host Hy in AS A uses this format for issuing the following
request to its local key server KSu:

Hp — KS4:  format || val_time || 7. 9)

We assume that this request and the reply are sent over a secure
channel. We do not specify the details here as they may differ for
different ASes, see §7.3.5. Similar to the first-level key exchange,
val_time specifies a point in time at which the requested key is
valid. The key server only replies with a key to requests with a
valid timestamp and only if the querying host is authorized to use
the key. An authorized host must either be an end point of the
communication that is authenticated using the second-level key or
authorized separately by the AS.

“Instead of requesting first-level keys individually for all protocols as described here,
it is also possible to return all available first-level keys to a single general key request.
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Figure 3: Validity periods of secret values based on the des-
tination.

4.4 Key-Server Discovery

When a key server wants to contact another key server in a remote
AS, it needs to know the IP address of the remote server.

In the SCION architecture, the conecept of service addresses can
be used to anycast to a key server in a specific AS.

For the regular Internet, we make use of RPKI [11], which con-
nects Internet resource information to a trust anchor. It is typically
used as a trusted mapping from allocated IP prefixes to ASes autho-
rized to originate them in BGP [47]. As the deployment numbers of
RPKI are growing [55], we envision to extend the RPKI certificate
with the IP address of the key server (e.g., by encoding it into the
common name field or creating a separate extension [17]).

Using this mechanism, each AS publishes a list of IP addresses
(or an IP anycast address) that is publicly accessible and shared by
all key servers. The routing infrastructure will direct the packets
to the topologically nearest key server. This mapping from an AS
identifier to an IP address is verifiable through RPKI to prevent
unauthorized announcements of key servers.

In case RPKI has not been fully deployed, key-server discov-
ery could also work using a DNS entry that maps a domain to IP
addresses of key servers.

4.5 Key Expiration

Shared symmetric keys are short-lived (i.e., up to one day lifetime)
to avoid the additional complication of explicit key revocation.
However, letting all keys expire at the same time would lead to
peaks in key requests. Such peaks can be avoided by spreading out
key expiration, which in turn will lead to spreading out the fetch-
ing requests. To this end, we introduce the deterministic mapping
offset : (A,B) > [0, t) that uniformly maps the AS identifiers of
the source in AS A and the destination in AS B to a range between
0 and the maximum lifetime ¢ of SVy4. This mapping is computed
using a (non-cryptographic) hash function:

offset(A,B) = H(A || B) mod ¢. (10)

The offset is then used to determine the validity period of a key by
determining the secret value SVILJ1 that is used to derive K4_,p at
the current sequence j as follows:

[start(SVi) + offset(A, B), start(SVjH) + offset(A,B)). (11)

Figure 3 illustrates the process of selecting the correct secret value
of A. In the first row the sequence of secret values is depicted
without any offset. The following three rows depict the intervals
based on different destination ASes (B, C, and D). At the current
time (indicated by the vertical red line), A uses S Vf"‘ to derive Kg_c.
On the other hand, K4, g and K4, p are derived using SV};‘I.

5 PISKES PACKET AUTHENTICATION

Using the symmetric keys described in the previous section, PISKES
enables source and packet authentication for a wide variety of appli-
cations. In this section, we first describe the general authentication
mechanism and then apply it to two different use cases: DNS re-
quests and general host-to-host communication.

5.1 Authentication Mechanism

To send packets with PISKES to Sg in AS B, the source H4 in AS A

first requests the second-level key Kg from its local key

:Sp—A:Hy
server. For a packet pkt, the source then calculates an authentication
tag

tag = MAC,p (%) , (12)

B:Sg—A:H,

where pkt is an immutable part of the packet, which can include
parts of the layer-3 and layer-4 headers and optionally the layer-4
payload. It is important to only include immutable fields as the
verification would otherwise fail at the destination, see also the
following discussion in §5.1.1. The destination uses A’s AS num-
ber and Hy4’s IP address to derive or request the shared key and
recalculate the authentication tag.

To authenticate packets, the destination must be able to deter-
mine the key in use. In SCION, the AS number is part of the normal
packet header and can thus be used directly to derive the first-
level key. The additional (AS-local) host address then identifies the
required second-level key. In a SCION deployment, PISKES thus
simply adds the authentication tag to the original packet:

PREION = pkt || tag. (13)

In the current Internet, only the IP address of the source is part
of the IP header, but not the AS number. In addition to an authenti-
cation tag (16 B), PISKES therefore also adds the 4 B AS number [70]
to the packet if used in today’s Internet:

Phipisis = pkt || A || tag. (14)

5.1.1 Network Address Translation. By breaking end-to-end con-
nectivity at the network layer, network address translation (NAT)
poses an obstacle to PISKES: if NAT is performed between source
and destination, the destination may see a different source address
than the source host. To enable successful source-address verifica-
tion in this case, the local key-server always provides the second-
level key based on the host’s public IP address to the host (also in
the case it employs carrier-grade NAT). In addition, it is important
that the input to the MAC calculation does not include the source
of the packet as this might be changed along the way. With this
mechanism, the destination host uses the translated source IP ad-
dress to derive the symmetric key, which coincides with the key
used by the source to create the authentication tag.

5.1.2  Misbehaving ASes. By default, PISKES does not check if the
source’s IP address is really owned by the corresponding AS. The
remote AS can therefore in principle derive and distribute host-level
keys for IP addresses it does not own. To address this for ASes that
are not fully trusted, the destination can sample authenticated pack-
ets and verify the IP-address ownership with RPKI. Misbehaving
ASes are thus detectable and can be punished, e.g., by blacklisting.
Note that ASes can only hurt their own customers by misbehaving,



not other ASes. In a SCION deployment, this issue does not occur
as host addresses are only valid within an AS and can be assigned
independently by each AS without requiring global coordination.

5.1.3 Replay Attacks. In order to rule out replay attacks, the des-
tination can deploy a duplicate-detection system (e.g., based on
Bloom filters) in addition to authenticating the packets. If the au-
thenticated part of the packets, pkt, does not provide sufficient
freshness, PISKES can additionally add a timestamp or sequence
number (#s) to the packet and the MAC calculation:

tag’ = MAC p (;Tt I ts) . (15)

B:Sgp—A:Hu

5.2 High-Speed DNS Authentication

DNS is among the most exploited protocols for traffic amplification
in DoS attacks [53], as it is widely used and offers amplification
factors up to 58 [67]. This section shows how PISKES can be used
to provide source authentication in the context of DNS as a service
that requires high-speed verification without storing per-client
state. Existing solutions (e.g., DNS Cookies or DNS-over-TLS) do
not provide the same properties (for details see §8).

On-the-fly Key Derivation. DNS servers typically require high
throughput and have a large number of clients. Thus, high-speed
verification of source authenticity with little required state is es-
sential. To enable on-the-fly key derivation for a DNS server inside
AS B, we make use of a DNS-specific secret value SVI?NS and a

first-level key IzBPE)SA derived from it:

KON, = PRF g17ons (A) . (16)

This first-level key is then exchanged with other ASes along with
other first-level keys as discussed in §4.3.1. By sharing the protocol-
specific secret value SVII;)NS with a DNS server Hpns located in AS
B, the key server KSg delegates Hpns to locally derive second-level
keys without contacting the key server and without storing any
per-AS keys. For a DNS query received from some end host Hy,
Hpns performs the first-level derivation as specified above and uses
the resulting key KEEE‘ to derive the second-level key,

K s A, = PRFgoxs (Hpws || Ha) - (17)

The derivation operation from an end host perspective is the same
as for any destination, but the end host’s key server will use the
stored protocol-specific first-level key to derive the final key. In
addition to authenticating the source of the request, this key can
be used to authenticate the response as well, thus significantly
increasing the security of the DNS lookup.

EDNS(0) Authentication Option. Since modifying the DNS re-
quest and response format possibly breaks existing DNS resolvers
and authoritative servers, EDNS(0) [18] provides a backwards-
compatible extension mechanism for DNS. EDNS’ deployment is
already essential for some applications of DNS, e.g., for enabling
UDP transport for DNS messages larger than 512 B, or for DNSSEC
to signal the request to include DNSSEC data in the response.

We use a custom extension for PISKES authentication that in-
cludes the total query/response length, the source AS number
(which is necessary in today’s Internet), a timestamp, and the per-
packet MAC. The per-packet MAC for DNS queries and responses

is computed over the DNS header and all fields contained in the
extension. Thus, the input size for the MAC computation is fixed.
Using the PISKES EDNS(0) option, packet authentication for every
DNS packet introduces 28 B of header overhead.

5.3 End-Entity Authentication

As a second application of PISKES, we show how the origin of
packets between end hosts in the Internet can be authenticated.
Authenticating data-plane packets requires highly efficient mecha-
nisms to avoid opportunities for DoS attacks. We again make use of
second-level keys established using PISKES to calculate per-packet
MACGCs.

Key Exchange for End-Entity Authentication. For end-entity
(EE) authentication, protocol-specific secret values provide little
benefit, so we use the standard key derivation: The corresponding
second-level key for communication between end host H4 in AS A
and end host Hp in AS B, is derived by the key server as

KB, b, = PRFi,_, ('EE” || Ha || Hp). (18)

where H4 and Hp represent the IP addresses of the end hosts.

In this case, both end hosts need to contact their local key server

to fetch the second-level key. Since the first-level key is derived
from the zeroth-level key of AS A, the key server KS4 can directly
derive the final second-level key. Provided that the key server KSg
in AS B has set up the first-level key with AS A, it can directly
derive the final key based on the stored K4, as well.
Packet Authentication & Verification. The symmetric key can
be used to compute a MAC over the packet header or the entire
packet (including payload), as described in §5.1. In order to add the
MAC field to the packet, there exist multiple approaches, such as a
custom header, a custom trailer, an IPv6 extension [13], or a TCP
option [69]. The MAC value is added at the end host, but our system
could also be implemented as a middlebox service (see §7.3.1).

Upon reaching its destination, the packet’s MAC value is verified
by the receiving end host using the second-level key. If the MAC is
correct, the receiver is assured that the packet originated from the
source AS. If the destination host trusts the source AS and its own
AS, the destination host can also trust the source addresses.

6 IMPLEMENTATION AND EVALUATION

Methodology. To demonstrate the scalability of our approach, we
implement a prototype of PISKES on a commodity server platform
and evaluate its performance through a series of experiments. To
analyze the performance and scalability of our system, we measure
the throughput and latency introduced by each operation, and
use micro-benchmarks and profiling for bottleneck detection. All
reported results are obtained through averaging 10> measurements.
The highlights of the evaluation are the following:

o A single processor core, dedicated to perform key derivation,
is able to saturate line-rate packet forwarding of a 10 Gbps
link. The implementation is able to process around 14.7 mil-
lion second-level key requests per second. Locally deriving
a second-level key (2 AES operations) takes less than 18 ns.

e Packet authentication with second-level key derivation on-
the-fly (e.g., on a DNS server) can be performed within 85 ns.



The commodity server was able to process 12.7 million au-
thenticated packets per second using a single core.

e For a complete DNS resolution, PISKES only introduces an
overhead of 3-5 %—significantly less than DNS-over-TLS or
DNS-over-HTTPS.

6.1 Implementation

We perform our experiments on commodity servers equipped with
an Intel Xeon E5-2680 CPU (20 MB L3 cache), 32 GB DDR3 RAM,
and a 10 GbE network interface card (NIC). To evaluate PISKES in a
minimal setting, we dedicate only two cores of the CPU to perform
all required processing: one core processes incoming and outgoing
packets, and the other core performs the key-derivation operations.
To generate traffic, we utilize a dedicated traffic generator that is
connected back-to-back with the server. The server receives the
traffic, processes it, and sends it back to the traffic generator for
measurement. All requests and responses are transported using
IPv4 on the network layer and UDP on the transport layer.

The key-server prototype leverages Intel DPDK [60] for packet
processing. As a PRF for key derivation as well as for MACs, PISKES
utilizes AES-CMAC that we implemented in assembly using Intel’s
AES-NI instructions [28]. For asymmetric cryptography, we use
cryptographic primitives based on Curve25519 [7], which offer high
performance, small public-keys (32 B) and small signatures (64 B).
The signatures are generated using the Ed25519 SUPERCOP REF10
implementation [59]. This implementation has been benchmarked
on many available architectures and allows easily reproducible and
comparable results. To measure the microbenchmarks, we utilize
DPDK’s time reference functions that internally fetches the RDTSC
counter. The MAC comparison during packet authentication is
implemented using SSE2 instructions.

For the evaluation of PISKES with DNS, we implemented a DNS
stub resolver and server in Golang using a common DNS library [25].
Each component is run on a separate commodity server and we
evaluate latency using microbenchmarks.

6.2 Performance Evaluation

6.2.1 AES-CMAC Computation. For the AES-CMAC computation,
we compare the performance (in CPU cycles) of our implementation
in assembly to the implementation in libcrypto of OpenSSL [61].
As the input gets padded to a multiple of the block size, we only
evaluate full block sizes. Figure 4 shows that our implementation
outperforms libcrypto by a constant offset (although libcrypto also
uses AES-NI). For small input sizes, our custom assembly imple-
mentation roughly doubles the speed.

6.2.2 AS-Level Key Exchanges. For the AS-level key exchange, a
key server that receives a key-exchange request checks the ex-
change’s validity, then derives a first-level key, and finally sends
the encrypted and signed key back to the sender. Thus, we evaluate
how many first-level key exchanges the key server prototype can
handle in the default experiment setup.

As aresponder to key requests, the prototype implementation is
able to process 7900 packets per second using a single processing
core (see Table 3); verifying a single first-level request takes 125 ps.
As an initiator of key exchanges, our prototype is able to process
21600 packets per second; issuing a key exchange request takes
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Figure 4: AES-CMAC computation performance for differ-
ent input sizes.

Table 3: AS-level key-exchange performance of a PISKES
key server using multiple processing cores.

# cores 1 2 4 6 8

Packets per second 7900 15000 28000 39000 50600

46.3 ps. As AS-level key exchanges can also be processed in parallel
and only a single exchange needs to occur between each pair of
ASes per day, even a key server that is implemented on commodity
hardware can thus easily scale to Internet-wide deployment.

6.2.3  Performance of Local Key Derivation. A key server not only
needs to process first-level key exchanges, but also answer second-
level requests to clients located within the same AS. Second-level
key derivation consists of a single dynamic key derivation. We
evaluate the performance of local key derivation using our default
experiment setup. As a baseline for the experiments, we use packet
forwarding performance without any packet authentication.
Depending on the address type and second-level key type, the
size of a request issued to the local key server varies. We assume
that an IPv4 header measures 20 B, an IPv6 header 40B, and a
UDP header 8 B. Additionally, we use 1B type input to the PRF to
determine the key type. Thus, the smallest possible request size
is 58 B (containing 30 B of payload), which fits into the smallest
possible Ethernet frame size (64 B). Given a fixed-bandwidth link,
the smallest request size results in the highest packet rate, which
produces the maximum load on the key server. To estimate the
impact of packet processing, we also evaluate the upper bound for
second-level request size, resulting in a frame size of 117B (48B
header + 69 B payload). In this case all involved hosts are addressed
using IPv6 addresses. As we are using a block cipher (AES) as a PRF,
the input size to the function must be a multiple of the cipher’s
block size. If the input size exceeds the block size, multiple block
cipher operations are necessary to derive a key. Because we prepend
the protocol identifier for second-level key derivation, the input
size is further increased. For example, if communicating end hosts
are both addressed using IPv6 addresses, a key derivation requires 3
block-cipher operations. The measurements account for this factor.
As Figure 5 shows, the key-derivation operation adds a negligible
factor compared to the baseline for both minimal and maximal
frame sizes. The prototype is able to process 14.8 million 64 B and
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Figure 6: Packet verification performance for an end host
connected using a 10GbE link.

9.08 million 117 B packets. Micro-benchmarking the key-derivation
operation showed that each key derivation takes around 8.40 ns
(64B), or 17.5ns (117 B).

6.2.4 End-to-End Experiments. As end-to-end experiments we eval-
uate the packet-verification performance at the receiving end host.
The receiver first derives from a corresponding (cached) first-level
key and then recalculates and compares the MAC; we assume that
only the header is authenticated. In Figure 6, the performance of
PISKES is compared to the base case without key derivation and au-
thentication. While our implementation introduces some overhead
for small packets (64 B), it is able to saturate line rate for packets
of frame size of 128 B and larger. Processing a single packet takes
78.0 s for a 64 B packet and 83.6 ns for a 128 B packet.

6.2.5 PISKES with DNS. To evaluate PISKES as a mechanism to
provide source authentication to DNS, we compare the latency
overhead introduced by PISKES to legacy DNS for three different
transport modes: DNS over UDP [49], DNS over TCP [19], and DNS
over TLS (DoT) [32]. For each transport mode, we evaluate the
overhead of adding the PISKES EDNS(0) extension (including MAC
computation), and then measure the impact of key derivation. We
distinguish between only MAC verification without key derivation
(i.e., the server has the second-level key cached), additional second-
level key derivation (i.e., the server has the corresponding first-
level key), and both first- and second-level key derivation (i.e.,
the server derives the key from the protocol-specific secret value
SVPNS) In our experiments, we measure the processing time (using
microbenchmarks) on the DNS server and exclude any network
time. Additionally, the measurements for TCP and TLS do not
include the handshake in the beginning of the protocol.
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Figure 7: Latency of DNS requests between client and server
for DNS over UDP, TCP, and TLS. “base” refers to DNS with-
out PISKES, “mac” denotes the overhead of adding the EDNS
extension and MAC computation, “mac+12” and “mac+12+11”
additionally performs key derivation of the second-level re-
spectively first-level key.

Figure 7 depicts the results of our experiments. PISKES intro-
duces only marginal overhead (3-5 %) compared to a baseline of
legacy DNS, which is significantly lower than the overhead due to
TLS. The significantly higher baseline for all evaluated transports
compared to the previous experiments (on the order of hundreds of
microseconds) can be attributed to the overhead of the implemen-
tation in Golang, which includes the Linux network stack, and is in
line with other evaluations of DNS [10].

A recent evaluation of the DNS over HTTPS (DoH) ecosystem
by Bottger et al. [10] shows that DoH increases the DNS resolution
latency even more compared to DNS via UDP or TLS. Additionally,
the authors show that delayed queries have a significant impact
on TLS and DoH with HTTP/1.1 due to the serialization of the
connection (head-of-line-blocking), whereas DNS via UDP remains
unaffected. This shows that a system based on UDP as a transport
layer is better suited for DNS.

7 ANALYSIS AND DISCUSSION
7.1 Formal Security Analysis

To show how PISKES prevents attacks that undermine source au-
thenticity, we have formally modeled the key-exchange system
and verified its security properties using the Tamarin prover [48].
Tamarin is a state-of-the-art security protocol-verification tool that
supports both falsification and unbounded verification of symbolic
models. Using the Tamarin prover tool, we show (i) the secrecy of
key-exchange messages assuming that an agents’ private key is
not compromised; (ii) entity authentication as defined in Lowe’s
hierarchy of authentication specifications [45]; (iii) key uniqueness;
and (iv) key agreement between hosts. For entity authentication,
we show non-injective agreement using timestamps as time indica-
tors and injective agreement using nonces. All models and gener-
ated proofs can be found at https://github.com/benrothen/piskes-
verification.

We have shown that the adversary has no way of obtaining a
first-level key or second-level key, except by compromising an AS
or host involved in the key exchange. Given that second-level keys
are host-specific, the adversary is effectively prevented from issuing
a packet that evades our source-authentication system. Assuming
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the adversary has compromised one or multiple hosts at arbitrary
locations in the network, he is still only able to issue valid packets
from these compromised locations. Even if the adversary controls
a large number of end hosts, an authentic source IP address greatly
assists in identifying misbehaving hosts. In the worst case where
an attacker compromises a key server, he is able to impersonate all
hosts located within the AS. However, end hosts located outside the
corresponding AS are not affected. This engages an AS operator’s
interests to eliminate network-node attackers.

7.2 Overhead

7.2.1  Memory Overhead. PISKES introduces storage overhead by
requiring key servers and end hosts to locally store keys. We analyze
the two cases separately.

Key Server. PISKES requires each key server to maintain per-AS
key information, which is renewed every 24 hours. The per-AS key
information includes multiple first-level keys, as PISKES allows
to request keys that were valid at a past point in time or will be
valid in the future. Considering that the current number of ASes in
today’s Internet is around 68 000 [6], the storage overhead for key
servers is on the order of a few megabytes, which would fit into the
L3 cache of a commodity system. For example, if an AS stores first-
level keys for three consecutive days, the memory overhead would
result in 3 MB. This overhead has to be multiplied by the number
of protocol-specific first-level keys; however, as only few protocols
are expected to rely on these protocol-specific keys, the overhead
will not increase beyond several tens of megabytes. Assuming five
different first-level keys, we obtain a total storage overhead of
15 MB.

End Entities. End entities should cache second-level keys that have
been obtained through requests to the local key server. Assuming
a million different destinations, it would need 16 MB of memory
to cache second-level keys. If memory is a limiting factor, fewer
second-level keys could be cached, but fetched from the key server
on demand.

7.2.2  Communication Overhead. PISKES introduces communica-
tion overhead at the AS level—with (i) the daily exchange of first-
level keys and (ii) the second-level key exchanges between the
end-entities and the key server—and at the end-entity level—by (iii)
adding additional header fields, including an authentication tag, to
the packet.

AS Level. The first-level key exchange between key servers in each
AS is performed daily with a payload of less than 115 B. Thus, this
introduces negligible communication overhead, even if multiple
protocol-specific first-level keys are exchanged.

To estimate the number of second-level key exchanges, we an-
alyze the number of distinct flows observed on a tier-1 backbone
link [12], as for each distinct pair of end-points at least one second-
level key exchange is required. Even though traffic observations
on a backbone link might not lead to an exact result, it provides an
estimate upper bound (worst-case scenario). During the one hour
trace, we observed 23 300 000 distinct flows. Each second-level key
exchange creates 201 B overhead, which results in a total overhead
of 4.46 GB. Compared to the total size of the trace (185 GB), PISKES
introduces less than 2.50 % communication overhead. Given that

the second-level key establishment is performed within an AS, the
resulting communication overhead is purely local.

End-Entity Level. End-entity authentication using PISKES re-
quires adding an authentication tag and AS number (20 B) to the
packet header. Findings of prior research suggest that the average
packet size is around 736 B [35, 51]. On average, PISKES thus intro-
duces a communication overhead of only 2.6 %. In case of applying
PISKES to DNS with generally smaller request packets (< 100 B) [1],
the additional 28 B correspond to an overhead of ~30 %, which is
still significantly less than the overhead of (D)TLS or HTTPS [10].

7.2.3  Scalability. The total number of pairwise shared keys scales
quadratically with the number of ASes, resulting in a potentially
high overhead given a large number of ASes. In practice, however,
an AS only needs to proactively exchange keys with other ASes that
it will likely communicate with (which can be determined based on
past key requests). If a shared key is needed for an unexpected AS,
the key exchange can occur on demand which will result in a higher
latency for that request. We anticipate that such on-demand key
exchanges will be rare, as the majority of interactions will likely be
predictable.

However, even if the total number of ASes increased to one
million (15 times as many as today), the storage overhead on key
servers would only increase to ~200 MB (assuming five different
first-level keys per AS). The communication overhead of exchang-
ing these five different first-level keys for all 1012 AS combinations,
which requires two ~100 B packets each,’ amounts to a total daily
communication overhead of ~10'2-10-100B = 10'° B = 1 PB. This
is only 0.025 % of the total daily Internet traffic of 4EB in 2017 [15].

7.3 Deployment

7.3.1 Incremental Deployment. PISKES allows incremental deploy-
ment as key servers could be gradually deployed in each AS. Al-
ready in the incremental deployment phase, PISKES prevents the
addresses of upgraded ASes from being spoofed at other upgraded
destination ASes. Thus, early adopters can immediately profit from
PISKES’s security properties.

Authenticating a packet requires packet modification either at
the end host, or at a network appliance such as a middlebox or bor-
der router. Adding the MAC at the end host does not increase the
request size en-route. However, updating end hosts might not be
possible in the short-term. In this case, PISKES can be implemented
on a middlebox that computes a per-packet MAC and modifies appli-
cable bypassing packets. Also packet verification at the destination
AS can be performed by a middlebox.

If a destination does not understand PISKES traffic, it would likely
fail to process this traffic. In this case, the sending host contacts
its local key server and asks if the destination AS supports PISKES.
The key server might have previously derived second-level keys for
an end host in the corresponding AS or might forward the query
to a key server in the destination AS. We envision that if an AS
supports PISKES, then it deploys a middlebox that performs the
PISKES operations in case the end host does not support it. This
will prevent sending authenticated traffic to a destination host that

SFurther optimizations like sending all protocol-specific keys in one packet and com-
bining them with the key request of the opposite direction could reduce this overhead.



does not support PISKES. In the worst case, the end host could fall
back to legacy traffic.

In case of operational failures (e.g., a single key server fails), the
end entity will try to contact another key server in the same AS.
In the worst case, where all key servers fail, the system could fall
back to the current system with unauthenticated traffic.

7.3.2  Deployment Incentives. As PISKES can be deployed on com-
modity hardware and integrates well with the current Internet
infrastructure, the deployment obstacle for PISKES is low. In con-
trast to filtering-based systems, PISKES traffic can be recognized
outside of ASes that have deployed PISKES and can thus be priori-
tized by servers. Thus, relatively few companies deploying PISKES
to authenticate packets at their services—e.g., popular open DNS
resolvers of Google or Cloudflare—provide strong incentives for
ISPs to deploy PISKES and provide its services to their customers.

7.3.3  Key-Server Latency. The initial connection setup depends on
the latency of the connection between the client and the key server.
We envision that PISKES’s key servers are positioned in an AS at
a similar location as local DNS resolvers. As even public resolvers
have an average query latency of less than 20 ms [57] traversing
the Internet, we expect the latency of a local key derivation to be in
the order of a few ms. Furthermore, in most cases locally fetching a
key results in a lower latency than a full round-trip between client
and server that is required by other protocols. For ASes that are
geographically dispersed, multiple key servers can be deployed
(e.g., co-located with an access router or per point-of-presence).

7.3.4  PISKES and Trust in ASes. The keys provided by PISKES do
not provide full end-to-end authenticity or secrecy properties: The
source and destination ASes are able to derive the keys and could
thus perform an active attack. However, this is limited to these two
ASes—active attacks by intermediate ASes are not possible. PISKES
thus always enables AS-level source authentication and host-level
source authentication under the additional assumption of an honest
source AS.

7.3.5 Authentication within an AS. To achieve secrecy as well as
end-host authentication for communication between end hosts
and key servers, an AS needs an intra-domain end-host and/or
user-authentication system. We discuss different authentication
mechanisms based on the operational environment.
Authentication using TLS. In order to securely exchange second-
level PISKES keys between end hosts and key server, the end host
can establish a secure TLS channel to the key server. The identity
of the communicating parties is authenticated using public-key
cryptography for both the key server and the end host. Thus, the key
server can uniquely identify the end host and verify its legitimacy
to obtain a second-level key.

Deployment in ISPs. If the corresponding AS is an ISP, we assume
that they can identify their customers (e.g., terminal connection
number or router that has been deployed by the ISP). In this case,
only an attacker that is present at the customers local network can
gain access to learn keys.

Company / University. For ASes that are under the control of
companies or universities, login credentials or other local authen-
tication mechanisms can be used to identify the user. This gives

companies the ability to run their own web servers and have full
control over their key material.

Mobile Devices. For mobile devices such as smart phones that
are connected to the Internet through a mobile telecommunication
network, clients could be authenticated by the telecom provider, for
example using the International Mobile Equipment Identity (IMEI).

7.3.6  Network Mobility. Network mobility allows entities to move
from one AS to another while maintaining communication sessions.
In PISKES, key derivations are based on the current location of
the entity in the Internet. Therefore, as soon as an entity moves to
another AS, it needs to contact the key server of the new AS and
fetch new second-level keys. Because local key derivation is fast
and the latency of obtaining a key is small, the overhead is minimal.

7.4 Further Use Cases of PISKES

7.4.1  Encrypted SNI using PISKES. The TLS Server Name Indica-
tion (SNI) extension [9] allows servers to host multiple domains
on the same set of IP addresses. During the initial TLS handshake,
clients specify which domain they want to connect to using an
SNI extension that contains the hostname. The server returns the
corresponding TLS certificate and applies the connection configu-
ration for the specified domain. However, the SNI is transmitted in
cleartext and thus leaks the site visited by a client to an on-path
eavesdropper—a significant privacy risk.

To thwart this risk, the IETF is currently standardizing a mecha-
nism for encrypting the SNI extension (eSNI) [65]. For key distri-
bution, the server publishes its public key as a DNS record. Before
connecting to a server, the client fetches the server’s key via DNS.
The SNI is then encrypted using a symmetric key established based
on a DH key exchange. This introduces significant communication
and computation overhead, as the DH key exchange is performed
solely for SNI encryption and the client’s public DH key is trans-
mitted in the eSNI extension, requiring 256 B.

Additionally, the requirement of using DNS for key distribution
also introduces privacy risks. An on-path eavesdropper can observe
DNS requests to accurately determine which domains are visited
by a client. This can be prevented using DNS over TLS (DoT) [32],
which adds communication and processing overhead introduced
by TLS. Furthermore, the keys distributed using DNS have no au-
thentication or provenance information. This allows an attacker to
inject DNS replies or perform DNS cache poisoning to tamper with
the server’s public key. DNSSEC [29] forms a defense mechanism,
but suffers from deployment and security drawbacks [29]

SNI Encryption. PISKES can be used for encryption of the first
packet being sent from client Hy towards a server Sg using the key

Koo Bity = PRFK,_ 5 (“eSNI” || Sa || Hp) . (19)

The SNI extension can be encrypted and authenticated using this
key (e.g., using AES-GCM), providing secrecy against on-path at-
tackers (excluding the source and destination AS). H4 replaces the
SNI extension in the TLS handshake with the encrypted SNI, intro-
ducing 20 B overhead (see §5.1). Upon receiving a TLS ClientHello,
the server Sp authenticates and decrypts the eSNI and extracts the
requested domain.

This approach entails several advantages: (i) PISKES significantly
reduces the processing and communication overhead for involved



entities compared to a DH-based key establishment and (ii) avoiding
DNS as a mechanism for key distribution also avoids the privacy
risks of DNS.

7.4.2  Secure Control Message Protocol (SCMP). Security of a con-
trol protocol is essential for the security of higher-level protocols.
The Internet Control Message Protocol (ICMP) does not provide
any form of authentication and enables attacks on lower layer pro-
tocols using maliciously generated packets [26]. Providing security
for ICMP in today’s Internet is challenging, as control packets are
often created and processed by routers. Previously, it has been seen
that packet authentication by routers is too expensive and might
provide an additional attack vector for DoS attacks [39]. For exam-
ple, a naive approach of adding digital signatures to authenticate
ICMP messages would create a processing bottleneck at routers.
Alternatively, ICMP could be authenticated using IPsec, which has
high computational overhead and requires an expensive key setup
between end hosts [16]. To provide scalability to high amounts of
traffic, the authentication generation process needs to be highly
efficient.

We propose the Secure Control Message Protocol (SCMP), an
analogous protocol to ICMP in the current Internet but with source
authentication. SCMP packets are protected and verified by border
routers using a shared symmetric key on the AS level.
Authentication and Keys. SCMP’s authentication uses PISKES’s
second-level keys to compute a MAC of the entire packet (not only
its payload) and appends the MAC to the data field of the SCMP
packet. This approach offers scalability and efficient packet process-
ing. SCMP messages can be created by routers, end hosts, or other
AS components. This entails different types of SCMP authentication
key depending on the combination of source and recipient type of
the SCMP packet.

Due to the high efficiency required for SCMP on routers, every
router needs to be able to locally derive the necessary keys. We
therefore propose to use a protocol-specific secret value SVgcmp ,
which is shared with all routers in an AS A and can be used to
derive second-level keys in two steps:

K8 = PRFgysmp (B). (20a)
o-scmp _
KA—>B:HB = PRFKZT% (Hp) . (20b)

To verify an SCMP message, the receiving end host Hp has to
request this key from the local key server. If host Hg wants to
reply to the received SCMP messages, the host must reuse this
key to allow efficient verification on the border router (without a
fetching an additional key). Alternatively, an AS could also perform
verification on behalf of the end host.

In addition to routers, SCMP messages can also be exchanged
between two end hosts. In this case, they and are authenticated

using I%E\C:EZAB:HB’ that is defined as
s-scmp _ )
Kyt ety = PRFgeme (Ha || Hp) (21)

Both end hosts H4 and Hp need to request this key from their local
key server in order to authenticate a packet.

8 RELATED WORK

In this section, we extend the background of §3 and discuss addi-
tional previous research on source authentication, key distribution,
and DoS-defense systems with a particular focus on DNS.

Source Authentication. In the past, the issue of source-address
spoofing has often been tackled through filtering-based techniques
(see §3.1.1), which provide weak guarantees at partial deployment
or in the face of malicious ASes. Source authentication at the net-
work layer can be achieved through VPNs like IPsec [40]; however,
this generally relies on an expensive IKE handshake [38], which
in turn relies on pre-shared symmetric keys or asymmetric cryp-
tography for authentication. Passport [44] uses keys exchanged
via BGP announcements to authenticate packets at the AS level,
see §3.2. Cryptography-based source authentication has also been
studied in the context of future Internet architectures—but gen-
erally with large overhead: ICING [52], integrated in the Nebula
architecture [3], provides source authentication to on-path routers.
It requires each router on a path to store and look up keys shared
with other routers, resulting in a large memory overhead. ICING
introduces 42 B header overhead per verifying router. OPT [41],
designed for the SCION architecture [58], provides similar source-
authentication properties with a slightly reduced overhead and
more efficient key-establishment mechanism based on DRKeys.
Still, it introduces significant communication overhead of 16 B per
hop. The Accountable Internet Protocol (AIP) [2] proposes a differ-
ent path to authentication based on self-certifying names.
Symmetric-Key Distribution. Similar to PISKES, Kerberos [54]
uses a dedicated server for key generation and distribution, and
builds on symmetric cryptography to provide mutual authentica-
tion. However, it is designed and suited for local area networks,
not for deployment across the Internet. Kerberos’ key-distribution
server has no mechanism to provide key generation delegation to
other servers. This delegation allows servers to derive keys on-the-
fly for high-speed verification. More closely related to PISKES are
the global key-distribution systems Passport [44] and DRKey [41,
58] that have been described in §3.2.

Public Key Infrastructures. Several systems have been proposed
to create or improve global control-plane PKIs, including RPKI [11],
DANE [31], and IPA [42]. As we have discussed in §2.1.2, asymmet-
ric cryptography is not efficient enough to provide source authen-
tication for data-plane packets. However, these PKIs can serve as
anchoring points for the PISKES key distribution.

General DoS Defense. There exists a vast literature of systems
tackling various types of DoS attacks [73]. In addition to the already
discussed filtering- and source-authentication-based systems, there
exist several proposals based on network capabilities, including
SIFF [71], TVA [72], CAT [14], and SIBRA [5]. These systems gen-
erally operate within the network, in contrast to PISKES, which
only relies on the end hosts and thus provides stronger properties
in a partial deployment. Furthermore, these systems are orthogo-
nal to PISKES in that they often provide stronger properties but
themselves rely on an additional source-authentication system like
PISKES. None of the capability-based techniques allow the destina-
tion to authenticate the first packet.

Defense Mechanisms for DNS. Orthogonal to general DoS de-
fense mechanism, systems attempting to mitigate reflection attacks



targeting DNS have been proposed. For example, DNS Cookies [22]
are an EDNS option that provide a weak form of authentication
of DNS requests and responses by detecting and ignoring off-path
spoofed responses. DNS over TLS [32], DNS over Datagram TLS
(DTLS) [62], and DNS over HTTPS [30] provide confidential com-
munication between DNS entities and can also provide source
authentication when used in combination with client certificates.
However, all three systems inherit communication and process-
ing overhead introduced by (D)TLS negotiation (e.g., certificate
transfer) [10, 63, 64], and require per-host state (without deploy-
ment of [68]). Additionally, the systems cannot authenticate the
first packet that is sent by a client and, if no client certificates
are used, they cannot defend against on-path attackers during the
handshake.

9 CONCLUSION

An infrastructure that enables network address authentication is
hard to come by—despite its vital importance we do not have a
working system today. In this paper, we have presented PISKES,
an efficient system enabling source authentication based on highly
efficient symmetric cryptography and dynamic key derivation.
Through its efficient key hierarchy, services can already authenti-
cate the first packet received from any other host without relying
on a handshake to set up keying material. Our prototype implemen-
tations have shown that packets can indeed be authenticated in less
than 100 ns, and both communication and computation overhead
of PISKES are small. PISKES is an important building block for DoS
defense: on the one hand it can be used to prevent reflection and am-
plification attacks that are currently possible by abusing UDP-based
services such as NTP and DNS; on the other hand, end hosts can
use source authentication to rate-limit or drop traffic from specific
sources and thus filter out unwanted traffic. Since PISKES offers
unique and decisive advantages that previous systems lack-e.g.,
also provides early adopters with immediate benefits—and it can
be set up using commodity hardware, it may finally bring packet
authentication to the Internet.
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