
SVLAN: Secure & Scalable Network Virtualization

Jonghoon Kwon
ETH Zürich

jong.kwon@inf.ethz.ch

Taeho Lee
ETH Zürich

tlee@inf.ethz.ch

Claude Hähni
ETH Zürich

chaehni@student.ethz.ch

Adrian Perrig
ETH Zürich

adrian.perrig@inf.ethz.ch

Abstract—Network isolation is a critical modern Internet
service. To date, network operators have created a logical net-
work of distributed systems to provide communication isolation
between different parties. However, the current network isolation
is limited in scalability and flexibility. It limits the number of
virtual networks and it only supports isolation at host (or virtual-
machine) granularity. In this paper, we introduce Scalable Virtual
Local Area Networking (SVLAN) that scales to a large number of
distributed systems and offers improved flexibility in providing
secure network isolation. With the notion of destination-driven
reachability and packet-carrying forwarding state, SVLAN not
only offers communication isolation but isolation can be specified
at different granularities, e.g., per-application or per-process.
Our proof-of-concept SVLAN implementation demonstrates its
feasibility and practicality for real-world applications.

I. INTRODUCTION

Network virtualization has become increasingly prominent
in the modern Internet and is recognized as a core technology
for future networking. Data-center operators often resort to
creating logical networks for VMs, called virtual networks,
to provide communication isolation between core and edge
clouds. In the fifth-generation mobile network (5G), the notion
of network slicing (which allows the partitioning of a network
into virtual slices) is recognized as a key innovation. Essen-
tially, network virtualization creates multiple virtual networks
on top of a shared physical network infrastructure, striving for
security, isolation from malicious activities, and cost-effective
network management.

In particular, virtual extensible LAN (VXLAN) is a net-
work-virtualization technique that enables end-to-end network
isolation and is widely used in many data centers to support
large cloud-computing environments [33]. It connects multiple
VXLAN tunnel endpoints (VTEPs) configured with a same
VXLAN network identifier (VNI), applying an overlay tech-
nique to encapsulate layer-2 frames within layer-3 packets,
to isolate the communication from unwanted external entities.
Despite its short history, it has become a dominant protocol
since its introduction in 2013. Nonetheless, VXLAN has two
main limitations: scalability and flexibility.

First, each VTEP device needs to be frequently updated
to maintain a mapping between VMs and VNIs. The size of
the mapping information will grow with the number of VMs
and VNIs that servers host. In addition, with the increase in

the number of VMs and VNIs, the volume of ARP traffic
between VMs will increase. Already in today’s data centers,
ARP traffic requires significant bandwidth, and this will only
worsen as more VMs and VNIs are created [17].

Second, VXLAN supports a static isolation of commu-
nication at host or VM granularity. It is difficult to isolate
communication at different granularities, e.g., per-application,
which may be useful when one subset of VMs wishes to allow
communication for a specific application, while another subset
disallows that application. In VXLAN, two separate VXLAN
segments must be created in such a setting, which leads to
scalability issues when the demand for other isolation granu-
larities increases. In addition, once a virtual network is created,
removing a VM from the network is cumbersome as it requires
coordination between multiple parties (e.g., remove state from
each VTEP where the virtual network is deployed, configuring
each VM in the virtual network). However, such dynamism is
necessary for isolating communication on per-process or per-
application basis, since applications and processes could be
short-lived.

To address these limitations, in this paper, we propose
a secure and scalable virtual LAN (SVLAN) architecture.
Each endhost (or VM) dynamically initiates virtual networks
by expressing its consent for reachability, facilitating the
separation of enforcement and access management/delegation.
On a high level, SVLAN achieves communication isolation
based on explicit consent. That is, the sender (e.g., a VM
or a virtualized application) that wishes to communicate with
the receiver must acquire consent from the receiving VM (or
application). The core network of the data center ensures that
the sender has obtained receiver consent and only forwards
packets that carry the consent; packets without consent are
dropped, providing communication isolation.

SVLAN weds local network slicing with inter-domain
routing. To this end, we integrate two emerging technologies
and introduce new approaches to neutralize their drawbacks.
For capability-based networking, we separate the roles of au-
thentication, authorization, and verification by introducing new
entities including authorization delegate (AD) and verifier. This
allows us to push capabilities instead of requiring global pull,
thereby dispersing load, improving deployability, and reducing
propagation delay. For segment routing, we also introduce
a new approach, verifiable segment routing, which improves
the integrity and authenticity of routing control. With an
authorization proof, path segments remain unalterable, being
subordinated to the corresponding sender and receiver pair,
preventing potential routing-path hijacking, packet injection,
or replay, and dramatically improving the robustness of routing
control.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24162
www.ndss-symposium.org

SVLAN communication proceeds in 3 steps: (1) the sender
acquires an authorization token from the receiver’s authoriza-
tion delegate; (2) it includes the token in each transmitted
packet; and (3) the network forwards the packets only if the
tokens are valid. We do not fix or impose a specific entity
to validate the tokens. Instead, we create a conceptual entity
called verifier and design our protocol to be generic such that
any entity in the network, as long as they are on packets’
communication paths, can serve as a verifier (e.g., VTEPs
or routers). Such flexibility enhances the deployability of our
architecture since the verifiers can be determined based on
a variety of factors, including market demand or policy reg-
ulation. Nonetheless, different choices of verifiers do provide
different technical benefits, and we evaluate the technical merit
for each potential deployment scenario.

We have implemented a prototype framework that includes
a fully-functional tunneling endpoint, authorization delegate,
and verifier, and have extended the data plane to support
SVLAN packet forwarding. Through extensive evaluation
in a real-world environment, we demonstrate that SVLAN
introduces negligible processing overhead (6.7µs for authoriza-
tion and 26ns for verification) and tolerable latency inflation
(32.0µs on average). In addition, we further discuss an incre-
mental deployability along with various SVLAN deployment
scenarios.

In summary, this paper makes the following contributions:

• We introduce SVLAN, a generic framework that en-
ables scalable, flexible, and viable network virtualiza-
tion at various granularities, e.g., host and application
granularity.

• We enhance security in network isolation by enforcing
the receiver’s consent in communication by design,
that enables network filtering of the edge of the
network.

• We provide an evaluation of tradeoffs between the new
approach and existing approaches.

II. RELATED WORK

VLAN and VXLAN. Data centers are shared infrastructures
that host various services operated by different parties, even
potentially conflicting ones. Furthermore, security-sensitive
data are increasingly processed in data centers as well. Hence,
securing data centers to prevent leakage of one party’s data
to another has become an important issue. To this end, data
centers rely on the concept of isolation—isolating computing,
storage, and network resources.

To date, the operators of data centers typically rely on
virtual networks (VNs), which are isolated logical networks of
VMs, to achieve network isolation. The virtual LAN (VLAN)
standard (IEEE 802.1q) describes a way to create virtual
networks between hosts that are not directly connected to
the same network switch, dramatically improving security,
efficiency, and traffic management. However, VLAN cannot
scale to a large number of VNs [33], [55]. For example,
the VLAN identifier (VID) in the VLAN header is only a
12-bit value, which imposes a hard limit of 4094 virtual
networks (0x000 and 0x0xFFF are reserved). To provide
better scalability, the network community has proposed virtual

Fig. 1: The stateful VTEP hampers flexibility on VN migration.
In addition, adversaries can easily join the other VNs and
manipulate VNIs to forward unwanted traffic.

extensible LAN (VXLAN) [33], which interconnects layer-2
networks over an underlying layer-3 network.

VXLAN achieves better scalability than VLAN in two
ways. First, the VNI is a 24-bit value, which allows for up to
16 million VXLAN segments (or virtual networks) to coexist.
Second, it organizes the core network of data centers as a
layer-3 network (in contrast to layer-2 for VLAN) enabling
IP-based routing, which provides better scalability. It reduces
the amount of state (i.e., per-VM state) at top-of-rack switches
in data centers, and enables equal-cost multipath to utilize
redundant links in the network. Although VXLAN scales better
than VLAN, it is still limited in scalability and flexibility [21],
[49].

Security has never been a major consideration in VXLAN.
VTEPs in different network segments recognize each other
by joining the layer-3 multicast group via the Internet Group
Management Protocol (IGMP). It helps fill up the forwarding
tables on VTEPs by broadcasting ARP requests to the multi-
cast group. Only VTEPs that are listening to the multicast-
group traffic respond to the ARP requests, enabling VMs
to discover the MAC addresses of target VMs and allowing
unicast packets to other VMs in the same VNI. However, as
shown in Figure 1, there is no concrete countermeasure against
adversaries with enough capability to alter packet headers to
impersonate another VNI. Therefore, it might fail to isolate the
VN from unwanted traffic. Lately, some mechanisms have been
suggested to secure the VXLAN environment using VXLAN
membership information [11]. However, the authorization of
membership requires additional state (i.e., per-VM state), and
hence it worsens the flexibility and scalability.

To overcome these limitations, we design a new network
virtualization approach with the notions of “destination-driven
reachability” and “packet-carrying forwarding state”, achieving
a high degree of freedom in network virtualization with a
strong guarantee for isolation. The following are brief intro-
ductions to related areas.

Software-Defined Networking (SDN). As an early pre-cursor
of SDN, the SANE [13] system shares some basic design tenets
with SVLAN: packets carry capabilities for each traversed
switch, for the entire end-to-end path. In contrast, SVLAN
is more light-weight, carrying a single capability for the

2

destination, more in the spirit of VLAN. Furthermore, SVLAN
comes along with incremental deployability; it does not require
a full deployment across the network nor any modification on
the endhost.

The typical SDN-based approach, as proposed by the
Ethane [12] system, embodies state on network switches to
enforce policy and encode forwarding behavior. Fine-grained
forwarding behavior can be defined, at the cost of per-flow state
on all intermediate switches. Mobility and network failures re-
quire state re-configuration on intermediate switches, which we
aim to avoid in SVLAN– as an advantage, flow management
in SVLAN can be handled exclusively by the end application
without requiring alteration of in-network state.

Micro-segmentation. Micro-segmentation [34], [25] can cre-
ate secure zones in cloud environments that enable tenants
to securely isolate their workloads from others. Traditionally,
data centers have employed various security primitives, such as
firewalls, IDS/IPS, and ACLs, to protect the internal network
and their customers from security breaches. However, once
an adversary bypasses the protection methods, they have
access to the data center to carry out attacks. With micro-
segmentation, fine-grained security policies are applied to
individual workloads even for the internal network, enhancing
attack resilience.

Since the concept of micro-segmentation has been pro-
posed by VMWare [58], [37], many data centers have in-
troduced micro-segmentation into their network, promoting
the idea of how network virtualization can be improved with
security. Yet, a specific way to realize the idea has not been
standardized, remaining at an intermediate development stage.

Off-by-Default. Over the past decade, researchers have made
various proposals to allow receivers to enforce their consent
towards incoming traffic, and the proposals can be classified
into two broad categories [60]: filtering-based and capability-
based approaches. In filtering-based approaches [7], [31], [4],
receivers express their consent as filtering rules and these
rules are installed at network entities (e.g., routers). Then,
for each packet, the router evaluates the filtering rules of
the respective receiver to determine its consent. However, the
filtering approach can create false positives and false negatives
when routers need to aggregate filtering rules of the users.
Moreover, disseminating and updating the filtering rules on
Internet routers is a non-trivial task.

On the other hand, in capability-based approaches [3], [59],
the receivers—not routers—grant permissions to the senders,
where a permission is often implemented as a (cryptographic)
token that can be validated by the network. Then, the senders
include the tokens in their packets, and the network only
forwards packets with valid tokens. Capability systems have
one major vulnerability: denial-of-capability (DoC) attacks [5],
where an adversary floods the receivers with capability-request
messages so that legitimate senders cannot receive capabilities
from the receivers. To mitigate DoC attacks, previous work
has focused on limiting the capability-request rate by the
senders [42], [8], [1].

Segment Routing. Segment routing [18] realizes the source-
routing paradigm [56]; a source who wants to communicate
with a destination builds the forwarding path of network
packets by collecting a set of routing pieces, called “path

segments”, and assembling them as an ordered list of seg-
ments. Network infrastructure ensures that the packets are
steered through the intended forwarding path. Hence, it greatly
improves transparency and control over packet forwarding,
resulting in many desirable properties such as multipath com-
munication, path-aware networking and high-performance data
transmission. Furthermore, considering the slow speed of the
current Internet to converge after network failures [28], [15],
[23], in fact, segment routing would provide faster recovery
compared to the current Internet, also achieving higher routing
flexibility [19].

SR-MPLS [54] is MPLS-based segment routing in which a
sender specifies the forwarding path by adding stacked MPLS
labels to the packet header. Thanks to the MPLS data plane—
enabling flexible and efficient network programming—and the
backward compatibility with existing MPLS-enabled networks,
SR-MPLS is being considered as one of the most viable
approaches. The segment-routing architecture has evolved to
also embrace the IPv6 data plane, called SRv6 (segment
routing for IPv6) [10]. With the introduction of the network
programming concept into SRv6, it mitigates the significant
encapsulation overhead, a list of 128-bits IPv6 addresses.
Recently, segment-routing approaches have been presented as
promising technologies that would fuel 5G innovation [24],
[43]. In addition, the SCION future Internet architecture can
express segment routing semantics at inter-domain scale by
expressing paths at AS-level granularity [61], [44].

III. OVERVIEW

The goal of this paper is to build a lightweight architecture
that enables secure, scalable, and fine-grained network slicing.
That is, each host expresses consent towards incoming traffic
while the network only delivers authorized packets to their
respective destinations. In this section, we describe the desired
properties for our architecture, a high-level system model that
we consider to achieve the goal, and the assumptions.

A. Desired Properties

Scalability. The new architecture should allow a high degree of
expressiveness for the definition of virtual networks in multi-
tenancy environments, such that it achieves scalable network
virtualization.

Flexibility. Network administrators should be able to explicitly
regulate the communication policies without an ambiguity that
might lead to the failure of network isolation. In addition, the
virtual network should be easily updatable at any time.

Security. Our architecture must ensure that packets without
receivers’ consent do not reach their intended destinations, so
that the virtual network is completely isolated. In addition,
the sender should not be able to transfer the authorization to
another sender.

Practicality. We consider the practicality of our architecture
from the following two perspectives:

• Performance Overhead: The additional latency for
acquiring the receiver’s consent should be on the
order of a round-trip time (RTT) and degradation of
the packet-forwarding performance due to the verifier
should be minimal.

3

Fig. 2: High-level overview of SVLAN.

• Deployability: We must ensure that entities that would
deploy the two functionalities (i.e., authorization del-
egate and verifier) should be incentive-compatible.
In addition, compatibility with the existing network-
virtualization protocols and devices needs to be en-
sured.

B. System Model

Figure 2 depicts a high-level overview of our architecture,
which consists of three functional entities in addition to the
sender and the receiver: 1) an authorization delegate (AD) of
the receiver that authorizes communication from the sender to
the receiver, 2) a verifier that ensures the sender has acquired
consent from the receiver, and 3) stateless virtual tunnel
endpoints (SVTEPs) that bridge traffic between SVLAN
segments.

SVLAN communication proceeds in four steps:

1) The receiver (or network administrator) uploads its
receiving policy to the AD, which represents a virtual
network configuration that specifies who can send
packets to the receiver.

2) In preparation for a data transmission, the sender’s
SVTEP acquires the consent of the receiver by re-
questing an authorization proof from the receiver’s
AD. The AD evaluates the receiver’s policy and
issues an authorization proof as a proof of consent.

3) The sender’s SVTEP sends a packet to the receiver.
In this packet, the sender includes the authorization
proof that represents the receiver’s consent.

4) The verifier ensures that the packet is valid by verify-
ing the validity of the proof, and forwards the packet
only if the packet is valid.

Separation of Roles. A central property of SVLAN’s design
is its separation of the various roles. There are three important
aspects to our model:

First, the process of providing consent (i.e., authorizing
a sender) is split between two entities: the receiver and its
AD. The receiver generates the receiving policies; however,
the AD—not the receiver—grants consent, i.e., provides autho-
rization proofs, based on the receiver’s policy. The separation
increases resilience against DoC attacks by allowing receivers
to choose well-provisioned ADs.

Second, we separate the role of the AD and the verifier. In
our model, an AD issues authorization proofs that the senders
embed into each packet. Then a verifier ensures that packets
have valid proofs. We separate the two functionalities for two
reasons. 1) The performance requirement between the two
functionalities are vastly different since verifiers handle data
packets and need to process packets at a significantly higher
rate. 2) Decoupling the functionality fosters deployability since
we can assign the roles to the most appropriate entity (i.e.,
incentive-compatible for each functionality). Note that we are
not the first to consider this separation, which is also made by
capability-based systems [47], [38].

Third, we also split the role of an endhost and the SVTEP.
Similar to the existing network-virtualization schemes, an
SVTEP functions as the tunnel endpoint bridging two virtual
network segments to be logically connected. The SVTEP
acquires authorization proofs from the AD and performs en- or
de-capsulation for inbound or outbound packets, respectively.
In this design, unchanged endhosts are supported, which
improves deployability.

It is important to note that the separation of roles does not
mean that the functions cannot be collocated. For example,
although the receiver delegates the authorization process to
its AD, the receiver could still issue a path segment itself. In
addition, a large security service provider, such as Cloudflare,
can act as both an AD and a verifier. However, the functional
separation means that our protocol should work even if the
functions are implemented by different network entities that
are not collocated. We discuss various deployment models and
their implications later in Section VIII.

C. Assumptions

Source Authentication. Our architecture requires packets
to be authenticated to their corresponding sender so that a
malicious sender cannot impersonate a legitimate sender to
acquire receiver’s consent and send packets pretending to be
the legitimate sender. There are well-established cryptographic
mechanisms [29], [32], [9] that can be used to authenticate
packets to their corresponding sender.

Secure Cryptography. We assume that cryptographic primi-
tives that we use are secure: signatures and message authenti-
cation codes (MACs) cannot be forged, and encryption cannot
be broken, as long as the cryptographic keys remain secret.

Time Synchronization. We also assume that entities in the
network (i.e., senders, verifiers, and ADs) are loosely time
synchronized within a few seconds by using a protocol such
as NTP. Time synchronization is used to enforce the time
constraints of a receiver’s consent, but does not affect to the
control plane in SVLAN.

IV. SVLAN ARCHITECTURE

We now describe the details of our architecture.

A. Path Segment as Receiver’s Consent

Receiver’s consent is an integral part of our architecture,
achieving dynamic network virtualization based on each re-
ceiver’s needs. With the concept of segment routing, we utilize
the path segment as the receiver’s consent towards incoming

4

Fig. 3: Only authorized senders can retrieve valid path seg-
ments and forward packets to the receiver.

traffic; only authorized senders are able to acquire the path
segments that steer packets to the destination, so that only
members in the same virtual network can communicate, as
Figure 3 shows. We extend the concept of path segment as
receiver’s consent even further to be more secure, by providing
segments with authorization proofs that indicate the validity of
the segments.

Requirements. We now identify the requirements for design-
ing the authorization based on the desired properties.

• Ensure that a segment is only valid for authorized
senders. That is, a segment cannot be transferred to
or shared with any other sender.

• Ensure that the bandwidth overhead due to segments
and authorization proofs in the packets remains small.

• ADs must be able to compute and disseminate the
valid path segments efficiently.

• Verifiers must be able to verify the path segments
efficiently to ensure that there is no significant increase
of the processing delay. To this end, we should not
require large amounts of state, e.g., per-host state,
on verifiers. In addition, packet verification should
not require additional communication overhead (e.g.,
a challenge–response protocol [2], [39]) for checking
the validity of the segments.

Strawman Approaches. The process of authorizing packets
is based on two pieces of information that the AD provides to
the verifier and the SVTEP. The first piece of information is
provided to the verifier as a verification instruction to evaluate
if an incoming packet has been authorized by its receiver.
The second piece of information is provided to the sender-side
SVTEP as the authorization proof, which the SVTEP includes
in every packet and the verifier uses to verify receiver consent.

There are various ways to design the authorization process
based on the amount of information placed on the above-
mentioned two pieces of information. We first present two
strawman approaches (state centric and asymmetric centric)
that place all necessary information in one of the two pieces.
Then, we present our design, which represents a middle ground
and combines the advantages of the two approaches.

In the state-centric approach, we can place all necessary
information onto the verification instructions that the AD
provides to the verifier. Specifically, the AD generates a
separate verification instruction for each sender (or for each
flow) and sends the instructions to the verifier. The verifier
stores all received instructions in its forwarding table; then for
each incoming packet, it finds a matching instruction using the
packet content (e.g., network and transport headers) and only
forwards packets if it can find a matching instruction. This
approach is similar to software-defined networks (SDN), such
as the OpenFlow protocol: the AD can be compared to the
centralized controller in SDN; verification instructions to the
forwarding instructions; and the verifier to the SDN switch.

This approach reduces bandwidth overhead since we do
not add any additional information—authorization proof—
to data packets. However, it increases state overhead at the
verifier, since the verifier needs to store per-sender or per-flow
instructions.

In the asymmetric-centric approach, we can place autho-
rization proofs in the packets. Specifically, we can define a
certificate for the AD and use digital signatures using the
corresponding private key to create the authorization proofs.
For example, to create a per-sender authorization proof, we
use a digital signature over the address of the sender. When
the verifier receives a packet, it ensures that the authorization
proof is valid by verifying the digital signature in the proof.

This design avoids the state overhead at the verifier, since
the verifier does not need to maintain per-sender or per-
flow forwarding instructions. However, this approach requires
asymmetric cryptography, which is computationally expensive.
Specifically, the AD needs to generate signatures when creating
authorization proofs, and the verifier needs to verify signatures
when authorizing packets. Furthermore, the high computa-
tional overhead introduces the signature-flooding vulnerability.

Segment with Authorization Proof. We combine the two
strawman approaches to benefit from both. Specifically, our
design avoids a large amount of state found in the first ap-
proach and, at the same time, avoids asymmetric cryptography
required for the second approach.

We design the proof based on message authentication codes
(MACs) using a shared key k between the AD and the verifier
as shown in Equation (1). Namely, the proof is the MAC with
the path segment, the address of the sender, the expiration time
of the proof and the number of proofs as its input:

Proof (k,SegS→R,AddrS ,ExpTime, N) =

MACk (SegS→R | AddrS | ExpTime | N) (1)

This avoids the disadvantages of the strawman approaches
and satisfies the requirements. Since modern hardware can
compute symmetric cryptography efficiently, our design en-
ables efficient processing on the AD and the verifier. Further-
more, our design requires only per-AD state on the verifier to
store the symmetric keys shared with the ADs. That is, the
AD does not need to create per-sender or per-flow forwarding
instructions for the verifier, and the verifier does not need to
store these instructions. Lastly, our design prevents a sender
from sharing the path segments, since the segment (SegS→R)

5

and sender’s address (AddrS) are inputs to compute the proof
and the shared key is known only to the AD and the verifier.

Similar to the SDN controller in [48], the AD generates
and distributes the shared keys with the verifiers; the key
sharing can be done over the secure communication channel.
The centralized key distribution simplifies key management,
and thus sophisticated key-establishment protocols are not
required.

B. Protocol

This section describes the three protocols (Figure 2) in
SVLAN: getSegment(), send() and verify().

getSegment(). The sender, S, must obtain the consent of
a receiver, R, to send a packet to the receiver. To this end, the
sender-side tunnel endpoint (SVTEPS) asks for path segments
including authorization proof from the receiver’s AD. The AD
creates an authorization proof for the sender after it verifies
the sender’s authorization using the receiver’s receiving policy.
Specifically, the protocol proceeds as follows:

1) S requests an authorization proof to A (R’s AD):

S → A : AddrS | AddrR

2) A checks R’s receiving policy and issues segments
with proof:

A→ S : SegS→R | AddrA | ExpTime | N |
Proof 1≤i≤N (ki,SegVi→R,AddrS ,ExpTime, N)

On the request message (1), the sender provides the address
(AddrS) from which it would use to send a packet to the
receiver and the address of the receiver (AddrR). While it is
possible to infer the address of the sender from the source
address in the network header of the request packet, we
explicitly include the address that would be used as the source
address for multi-homed hosts: If the sender uses different
networks to communicate with the receiver’s AD and the
receiver itself, the sender must separately specify the address
that it would use to communicate with the receiver.

The AD consults the receiver’s policy to determine if the
receiver is willing to receive packets from the sender (AddrS).
If yes, the AD generates an authorization proof based on
Equation (1) using AddrS and the path segment SegS→R
that leads to AddrR (2). Additionally, the AD specifies the
expiration time (ExpTime) to limit the validity of the proof.
The ExpTime can be determined from the receiver’s policy
or the AD could specify an arbitrary but small value.

The AD may generate multiple proofs so that the sender’s
packet can be verified by multiple verifiers. In such a case,
the AD generates a proof for each of the verifier (Vi) using
a subset of segments (SegVi→R), because the segments can
be modified while the packet travels. Each proof is generated
using a symmetric key (ki) that the AD shares with each
verifier. In Section VIII-B, we describe the choice of verifiers
when we discuss about the deployment locations of verifiers.

send(). A sender can successfully send a packet to the
receiver only if it has path segments with a valid (e.g., non-
expired) authorization proof. In a data packet to the receiver,

the sender embeds the segments (SegS→R) and the autho-
rization proof (Proof 1≤i≤N) to prove to the verifiers that the
sender has acquired the receiver’s consent:

3) S embeds SegR and Proof on its data packet to R:

S → R : SegS→R | AddrA | ExpTime | N | ptr |
Proof 1≤i≤N | Data

The packet also contains fields to help the verifiers verify
the proof. Namely, it has AddrA, which a verifier uses to
determine the shared symmetric key (ki); N to indicate the
number of proofs; and ptr to indicate the proof that the
verifier should verify. Lastly, the sender must use the source
address (AddrS) that was specified in the authorization-request
message (1) as the source address in the network header.
Otherwise, the packet would be dropped by the verifier for
containing an incorrect proof.

A verifier runs verify() to ensure that the proof in the
packet is valid. To this end, the verifier first identifies the
symmetric key (ki) based on the AD’s address (AddrA) and the
proof (Proof i) that it verifies. Then, it verifies the proof using
the source address and path segment (AddrS and SegVi→R,
respectively) from the packet header, and ExpTime and N as
input. The verifier drops the packet as invalid (i.e., without
receiver’s consent) if the proof is expired or the proof cannot
be verified correctly. Once the verifier successfully verifies the
proof, it increments ptr to indicate the next proof (Proof i+1)
and continues to forward the packet towards the receiver.

C. Authorization Policy

Requirements. We design the authorization policies with the
following requirements:

• Expressiveness: It should be easy for the receivers to
express their receiving policies.

• Flexibility: We would like to design the authoriza-
tion policies such that users can easily describe their
receiving policies at different granularities.

• Scalability: While guaranteeing expressiveness with
the authorization policies, we need to limit the number
of policy rules that a user can have, such that ADs can
evaluate receiver’s policy efficiently.

Blacklist and Whitelist. We allow receivers to express their
policies as both a blacklist, to prevent specific senders from
sending traffic, and a whitelist, to indicate who can send
packets to the sender. Having only one of the lists is sufficient
for the receivers to express their policies, but using both lists
provides sufficient flexibility to the users in expressing their
consent policies while reducing the size of their policies (i.e.,
the number of rules in the blacklist and whitelist). For example,
a receiver that only talks with a selective set of senders can
“whitelist” such hosts while a receiver that requires more
universal access can use a blacklist to filter unwanted hosts.

Simultaneously having two lists can create conflicts and to
resolve such conflicts, we create one additional field priority.
In case of a conflict, a rule with a higher priority would be
enforced. Note that, rules with the same priority are processed
according to the order of freshness; a rule later inserted would

6

be executed. In summary, each entry of the two lists has the
format

〈src_IP ,mask , src_port , dst_port , proto〉
⇒ 〈priority ,Action〉 (2)

Here, Action determines the action that the AD should
take when a sender’s request matches the corresponding policy
entry. If an entry is a blacklist entry, Action would be not
to issue a proof, while if the entry is a whitelist entry, it
determines the granularity at which a generated proof would be
valid (e.g., per-host, per-application). We provide more detail
about the granularity along with the left part of the entry in
the next paragraph.

Policy Granularity. We support network-, host-, and also
application-level policies. Network-level policies allow the
receivers to express their consent for an entire network while
host-level policies are for individual hosts. In terms of Equa-
tion (2), these policies can be specified by specifying src_IP
and mask to reflect the target network or host and setting
dst_port and proto to be a wildcard (‘∗’). In addition, we
allow application-level policies, which additionally require
the destination port and protocol information. We support
application-level policies to maximize the flexibility on net-
work isolation.

Basically, we do not consider per-flow policies since flow
information does not enrich the policy expressiveness beyond
the application-level policies, yet can significantly increase the
number of policies. Specifically, source port is typically chosen
arbitrarily (i.e., ephemeral ports) and can change (i.e., address
translation); thus, src_port is marked as a wildcard by default.
Nevertheless, the receiver can regulate the sender’s traffic on a
per-flow basis by specifying the Action of the corresponding
whitelist policy entry to be for a single flow.

NAT. The AD should avoid any ambiguity in host identifica-
tion, and thus the policy must clearly specify each host with a
globally unique address identifier. For the hosts behinds NAT
devices, their address might be opaque if the multi-tenancy en-
vironment hosting them only supports private address. In such
a case, each host can be distinguishable with the translated
public IP address together with the forwarding port.

V. IMPLEMENTATION

We implement a prototype SVLAN on top of SCION [44],
a future Internet architecture that supports native segment
routing, for testing the general functionality and performance.
In addition, since SCION is designed for inter-domain segment
routing, we expand the SCION data plane with an SVLAN
extension header that conveys the intra-domain path segment
and authorization proof, enabling communication at an end-
host (and even application) granularity. The main reasons
of choosing SCION as the underlying architecture for our
implementation are 1) it already supports an embedded public-
key infrastructure (PKI) that satisfies our assumption described
in Section III-C, 2) it also supports segment routing along with
the separation of control and data planes, 3) it has a flexible
packet design that supports various extension headers, and 4)
it is easy to construct a testing environment in SCIONLab1.

1https://www.scionlab.org

NextHdr HdrLen ExtType SecType Path Segment (Rseg)

Authorization Delegate Addr. (Aaddr) ExpTime

MAC

MAC (continued)

0 7 15 23 31 63

Common

header

Addresses Forwarding

Path (segments)

SVLAN

Extension

Layer 4 and Data

SCION header

Fig. 4: The header format of the SVLAN extension.

Control Plane. In the latest version of the SCION codebase2,
an endhost employs the SCION daemon, called sciond,
to interact with the SCION control plane: it initiates a path
request message (i.e., SegReq()) to acquire path segments
necessary to build forwarding paths toward a destination, when
the sender attempts a new communication establishment. The
path service, a control-plane application similar to an SDN
controller, replies to the requests by aggregating path segments,
verifying them, and providing them to the requester. Once
sciond successfully gathers the path segments and constructs
forwarding paths, the sender puts a forwarding path into the
each packet header and transmits the packets.

We extend the SCION control-plane applications to enable
the getSegment() protocol: sciond operates as a part of
SVTEP, managing the getSegment() request and reply, and
the path service functions as an AD. When an endhost attempts
a connection establishment, sciond requests path segments
and authorization proof to the path service. The path service
consults the database that contains the network isolation policy
to determine if the sender and receiver are in a same VN. If
yes, the path service patches up path segments that lead to
the receiver, along with the corresponding authorization proof,
and replies back to sciond.

Data Plane. We also modify the SCION data-plane code to
realize the send() and verify() protocols. When sciond
successfully acquires path segments and authorization proofs,
SVTEP creates a SVLAN tunnel, generates SVLAN-enabled
SCION packets, and forwards the packets. The SCION net-
work protocol, implemented as the snet class, provides
interfaces for handling the SCION packet transmission. Similar
to the general UNIX socket, it supports SCION network APIs
such as Listen , Accept , Bind , Read , and Write, which enable
SCION connection establishment, SCION packet generation,
and interpretation. Here, we add APIs that extend the SCION
header with SVLAN information. For instance, by adding a
Write overriding method that expands a SCION header with an
SVLAN extension, it supports both the existing SCION header
generation and the SVLAN-enabled SCION header generation
simultaneously.

To generate SVLAN-enabled SCION packets, we leverage
the extension header field in the SCION header structure to
convey the SVLAN extension. This header design brings the
following advantages. First, the SVTEP can easily retrieve the
SVLAN header and process the verification. The HdrLen in

2https://github.com/scionproto/scion

7

TABLE I: Processing times (in µs) for getSegment()
requests from authorized and unauthorized senders.

Legitimate requests Illegitimate requests

of clients Min. Max. Avg. Min. Max. Avg.

1e3 4.8 8.4 6.0 4.0 7.8 6.0
1e4 4.7 9.6 6.0 3.2 9.7 6.0
1e5 4.8 11.0 6.8 4.0 9.6 6.2
1e6 4.9 11.3 6.7 4.0 10.2 6.2

the SCION common header points out the exact offset where
the extension header exists, thereby improving the processing
delays on SVTEPs. Second, by separating the SVLAN-based
routing from the inter-domain routing, it keeps the compatibil-
ity to the underlying network infrastructure. Lastly, it simplifies
the SVLAN implementation without a significant change in
inter-domain routing infrastructure.

Extension Header. Figure 4 details the SVLAN extension
header structure. The header begins with three bytes of general
extension header fields [44]. SecType specifies the type of
MAC that are used for generating the authorization proof, such
as CMAC or HMAC. Note that, in our prototype, we primarily
use the 128-bit AES-CMAC [53].

The next field contains the path segment that steers the
packet to the receiver. Since the table lookup in routing is
known to be a bottleneck for high-speed data transmission, we
anticipate not to keep a forwarding table. Instead, following the
stateless routing principle in SCION, we design SegR such that
it directly indicates the interface identifier (IFID) to which the
packet should be forwarded. Furthermore, to enable network
isolation at an application granularity, it also indicates the
binding port number on which the recipient application listens.
In conclusion, the SegR consists of two-bytes-long IFID and
Port . The following AddrA specifies the IP address of the
AD, so that helps SVTEP to retrieve the kA.

ExpTime is a timestamp generated by the AD, which
represents the expiration time of the authorization proof. The
timestamp is encoded as a 4-bytes unsigned integer, expressing
Unix time with a second granularity. SCION supports time
synchronization with second-level precision. That is, it sat-
isfies the last assumption we described in Section III-C. As
default, we set ExpTime = T + 300s, where T is the time
a AD receives a getSegment() request. And finally, an
authentication tag is following. The length of MAC is variable
depending on the type of MAC function and k, but in our
implementation, we set len(MAC) = 128 bits.

VI. EVALUATION

Now, we evaluate the performance of SVLAN by scru-
tinizing the following properties: processing overhead for
getSegment() and verify(), latency influence, and ca-
pacity overhead.

A. Microbenchmarks

We first conduct microbenchmarks for the key operations
in SVLAN. The operations are performed and measured

64 B 128 B 256 B 512 B iMix
0

5

10

15

20

25

30

35

40

T
h
ro
u
g
h
p
u
t
(M

p
p
s)

62%

99%

100%

100%

100%28% 49% 92%

100%

100%
11.3
Gbps

19.9
Gbps

37.1
Gbps

40.0
Gbps

40.0
Gbps

Baseline

Verifier Throughput

Fig. 5: Forwarding performance of a verifier.

on commodity machines equipped with Intel Xeon 2.1 GHz
processors and an XL710 40 GbE QSFP+ network adopter.

getSegment(). To investigate the performance of autho-
rization, we quantify the processing time required for proof
generation by the AD; it includes the time for membership
checking (receiver’s consent) and the MAC computation. For
the scalability measurement, we vary the size of the consent
database by increasing the number of clients up to 1 million.
Each client has 1000 authorized senders. Table I shows the
minimum, maximum, and average results for both authorized
and unauthorized getSegment() requests. The measure-
ments are performed 2000 times for each database.

The results indicate that the processing time is negligible
compared to the network latency. The AD requires 6–7 µs
to process each request on average, and it does not present
any significant differences regardless of whether the request
is legitimate or not; that is, the processing delay caused by
getSegment() is mainly coming from the database lookup,
not from the MAC computation.

We observed a slight increase in the maximum processing
times for requests from both authorized and unauthorized
senders increase while the number of clients increases—
8.4 → 11.3 µs and 7.8 → 10.2 µs for legitimate and
illegitimate requests, respectively. This result is expected since
the lookup time for AddrS and AddrR would increase if
the size of database increases. Nonetheless, the increase in
processing time is negligible; only a few microseconds for a
million entries. This results also indicate that SVLAN scales
well in the number of clients.

verify(). We also evaluate the processing overhead on a
verifier. To this end, we have implemented the verify() on
the Data Plane Development Kit (DPDK) [46], and evaluate
forwarding performance for various packet sizes including a
representative mix of Internet traffic (iMIX) [36].3 For the
comparison, we also measure the forwarding performance of
typical IP forwarding on the same machine as the baseline.

Figure 5 shows the results. For the small packets (64 and
128 bytes), the forwarding performance for SVLAN packets
degrades by approximately 50%. Although verify() for

3iMIX refers to typical current Internet traffic; its profile specifies the
proportion of packets of a certain size. Since the profile is based on statistical
sampling from actual Internet traces, performance evaluation using an iMIX
of packets is considered a good representation of real-world traffic.

8

0 100 200 300 400 500

Relative Latency Inflation (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

[Random] TTFP

[Smart] TTFP

Fig. 6: Latency inflation of the getSegment() protocol for
the deployment on the Amazon EC2 Cloud.

a single packet requires only 26 ns, the baseline exhibits
extremely short processing time—20 and 26 ns for 64-byte
and 128-byte packets, respectively—leading to an overall de-
crease in forwarding performance. For large packets, however,
it shows optimal performance and reaches the maximum
throughput. The evaluation results show the efficiency of the
SVLAN verifier that can handle 40 Gbps links that are fully
saturated with common Internet traffic patterns at line speed.

B. Amazon Deployment

To evaluate the latency inflation on the connection initial-
ization in SVLAN, we deploy SVLAN on the Amazon Cloud.
We initiate an EC2 instance at the 14 data centers distributed
over four continents, namely Europe, North America, Asia,
and Oceania. By deploying a fully functional SVLAN proto-
type, each EC2 instance can perform as an SVLAN endhost
empowered with SVTEP, a verifier, and an AD. In this setup, a
simple client–server application runs on the endhost to transfer
data over SVLAN at application granularity.

Next, we select three instances as the sender, the receiver,
and the AD. Note that we collocate the verifier and the
receiver to realize an on-path verifier that avoids unnecessary
detours in data transmission. There are two different selection
strategies applied: random selection and smart selection. In the
random selection, we randomly select three EC2 instances and
conduct experiments for all possible combinations. It gives us
2184 rounds of experiments. In the smart selection, we first
choose two EC2 instances for the sender and receiver, and then
assign another instance closest to the sender as the AD. This
approach is more realistic since it reflects the typical cloud-
based service model where clients generally contact the closest
regional cloud. From the smart selection, we get 168 different
combinations in total.

For each round of experiments, we measure two competi-
tive perspectives; the communication latency with and without
SVLAN respectively. For the first measurement, we disable
the SVLAN functionality such that the sender could engage
a communication with the receiver directly. This measurement
serves as the baseline latency. Second, we enable SVLAN
introducing an additional latency due to the getSegment()
and verify(), and measure the latency for the time to first
packet (TTFP). The comprehensive latency is compared with

0 100 200 300 400 500

Relative Latency Inflation (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

[Dst AS] TLS TTFB

[Akamai] TLS TTFB

[Amazon] TLS TTFB

[Akamai] TTFP

[Amazon] TTFP

Fig. 7: Latency inflation of the getSegment() protocol for
the large-scale simulation.

the baseline latency to compute the relative latency inflation.
Figure 6 depicts the results in the form of a cumulative
distribution function (CDF).

The random-selection approach introduces a significant
latency inflation. This is expected since a high portion of the
combinations of three instances has an inefficient deployment
model where the sender and receiver are close to each other
while the AD is far away. For example, in an extreme case,
the latency inflation increases by up to 1873% if the sender
and receiver are in Europe (e.g., Frankfurt and Paris) while the
AD is located in East Asia (e.g., Seoul).

For the smart-selection approach, the latency inflation is
below 75% in all combinations. More precisely, the latency
inflation is less than 50% for 93.4% of the combinations, and
the 93.3% of additional latencies do not exceed 78 ms (32.0 ms
on average) which is a tolerable latency overhead. The results
drive us to the intuition that the latency overhead introduced
by SVLAN is negligible for the modern cloud environment.

C. Large-scale Simulation

Now, we take one step further to investigate the latency
inflation of SVLAN for a large-scale deployment. To this
end, we leverage RIPE Atlas4 to simulate the sender and
receiver distributed geographically over wide areas. We ran-
domly select the RIPE nodes including 590 probes and 122
anchors distributed across 684 ASes in 178 countries. In this
experiment, the probes and anchors serve as the sender and
receiver respectively. We further extend the list of receivers
with Alexa’s top-100 domains to see the impact of SVLAN
on TLS connections.

To simulate the AD, we introduce three different deploy-
ment scenarios: 1) We use the 14 Amazon EC2 instances we
have initiated as a cloud provider with a small footprint. 2) For
a cloud provider with a large footprint, we leverage Akamai’s
CDN network. To determine Akamai’s edge-cloud servers that
are closest to the senders, we utilize the DNS system; we
trigger DNS queries from the RIPE probes to Akamai’s DNS
server, which in turn reply with the server addresses that are
closest to the probes. 3) We also simulate the AD on the

4https://atlas.ripe.net/

9

receiver’s AS. The different deployment simulation allows us
to evaluate the impact of the AD’s location.

We cannot deploy our SVLAN code to the RIPE nodes,
Akamai network, and the Alexa’s top-100 servers. To over-
come this limitation and investigate the latency inflation, we
perform analysis based on latency measurements. This ignores
the processing overhead of getSegment() and verify(),
but these overheads are negligible compared to network latency
(see Section VI-A). We use ping measurements to estimate
the latency between two entities, and then project the latency
measurement to the number of RTTs needed to complete the
connection. Figure 7 shows the relative latency inflations that
we simulate with the aforementioned experimental setup.

From the results, we make the following observations: 1)
The latency inflation in the modern Internet environment is
tolerable. The latency inflation is less than 50% for 67% of the
measurements and averages 70%. 2) The cloud-provider model
with a large foot print shows overall better performance than
on a small cloud footprint. 3) TLS does not strongly affect the
latency inflation. 4) In many cases, the AD on the receiver’s AS
demonstrates lower latency inflation than the cloud-based AD
models. The observations suggest that the deployment of the
AD is the key to minimizing the latency inflation. We further
discuss the location of the AD in Section VIII-A.

D. Bandwidth Overhead

To measure the bandwidth overhead introduced by
SVLAN, we first measure the size of the extra header required
to send packets. The extra header may differ depending on the
implementation, but here we measure the size of the extra
header based on two implementation scenarios: with (i) SR-
MPLS and (ii) SCION. In SR-MPLS, an additional header
for the authorization proof is necessary. SR-MPLS normally
allows up to three labels and each label has a size of 4 bytes.
Including additional 24 bytes for an authorization proof, the
SVLAN header becomes 36 bytes in total. The maximum
payload size is therefore 1424 bytes per frame when attributing
20 bytes each to layer-3 and layer-4 header and 36 bytes
to the SVLAN header on a general Ethernet frame with
MTU = 1500bytes.

SCION requires 8 bytes for the common header, 16 bytes
for the addresses, 24 bytes for the forwarding path, and 32
bytes for the SVLAN header for the same number of labels
and the authorization proof (Figure 4). This results in up to
1400 bytes of payload for each Ethernet frame. In VXLAN, a
total of 50 bytes of additional headers are generated including 8
bytes of VXLAN header and 42 bytes of encapsulation header.
Therefore, the maximum size of the payload for each frame is
1410 bytes. Table II shows the comparison results.

We estimate the goodput on a fully saturated 1 Gbps
link to see the bandwidth overhead. With a normal Ethernet
frame, it requires 1538 bytes including an interframe gap of
12 bytes, and thus the link supports 81274 packets per second.
The total amount of data that can be actually transmitted is
approximately 949 Mbps. If we apply the same measurement
to others, the goodputs of VXLAN, SVLAN (SR-MPLS), and
SVLAN (SCION) are 916, 926 and 910 Mbps, respectively.
The results show that SVLAN has no severe bandwidth
overhead compared to VXLAN.

TABLE II: Comparison of the header sizes, maximum payload,
and network performance on a 1 Gbps link. The SVLAN
header contains three segment labels and one authorization
proof.

SVLAN

Ethernet VXLAN SR-MPLS SCION

Extra header (bytes) - 50 36 60
Max payload (bytes) 1460 1410 1424 1400

Max goodput (Mbps) 949 916 926 910

VII. SECURITY ANALYSIS

We now discuss potential attack scenarios, their signifi-
cance, and how effectively our SVLAN design mitigates them.

Threat Model. We mainly consider two different goals of
the adversary: 1) infiltrate an isolated network without autho-
rization, and 2) disrupt network operation by leveraging the
SVLAN protocols. We consider that the adversary has enough
capability to compromise and control all SVLAN entities in
the network except for the AD; the AD is typically allocated
on well-provisioned and highly-secured systems, e.g., core
network, that can tolerate large amounts of incoming traffic
and security breaches.

A. Compromise the SVLAN Isolation

The objective of this attack class is to compromise the
SVLAN isolation without proper authorization. To this end,
an attacker may attempt to acquire a valid authorization proof,
or enforce unauthorized packet forwarding. The attacker has
clear incentives to perform such attacks, e.g., gaining access
to a restricted network zone or reserving more capability in
packet forwarding. We start by describing attacks that deceive
the SVLAN control plane and data plane; then we describe
brute-force attacks and compromisation attacks.

Source-Address Spoofing. An attacker may perform source
address spoofing to defeat SVLAN isolation. This attack can
be performed in the control plane to obtain an authorized proof
from the AD by impersonating an authorized address, and in
the data plane to misuse a sniffed authorization proof and send
packets to the destination.

We consider to use authentication to secure the control
plane. If the AD is in the same local network (also within the
same VLAN), then source authentication can be performed by
the AD by issuing an unique authorization proof to each host
through configuration or secure DHCP. In that case, we can
assume that the additional authorization proofs that are fetched
are secure. If the AD is outside the LAN (or the VLAN that is
created across domains), then a secure channel from the source
to the AD needs to be established. This can be a TLS-protected
connection, in which case the source will need a certificate that
the AD can verify. The SVLAN design is scalable with respect
to management, as the source verification and communication
policy is verified at a single place (the AD) and enforced at a
single place (the verifier).

For the data plane, we consider the same setting as all
the virtual LAN approaches; the network ensures separation of

10

TABLE III: The number of packets per second (PPS) and the
required time to brute-force the SVLAN MAC (in years) for
different link bandwidths.

64-bit MAC 128-bit MAC

Link PPS Time [years] PPS Time [years]

1 Gbps 976562 5.99e6 919177 1.17e25
10 Gbps 9765625 5.99e5 9191176 1.17e24

100 Gbps 97656250 5.99e4 91911764 1.17e23

traffic to prevent eavesdropping, thus the tags in the data plane
are considered secure. To achieve a simple system, the on-
path dataplane devices are assumed to be trusted, as otherwise
any of those devices could inject malicious traffic toward any
host on the virtual LAN (e.g., replay attacks). Within the
tradeoff space of security vs. efficiency/deployability, this is
the design point selected by virtual LAN systems—it would
be an interesting research challenge to also defend against
malicious data plane devices but that would likely dramatically
increase the complexity of the system.

Brute-Force Attack. An adversary may attempt to deceitfully
generate a valid authorization proof for AddrM . The brute-
force attack is a classic attack method that allows an attacker to
generate all the possible combinations to derive a valid MAC.
In our SVLAN prototype, however, the attacker must send
2128 ≈ 3.4e38 probe packets to brute-force the MAC. This
requires 3.48e32 seconds (or 1.17e25 years) for transmission
over the smallest SVLAN frame (136 bytes for 128-bit MACs)
on a 1 Gbps network link. Table III shows the time needed in
the worst case to successfully brute-force the MAC depending
on different sizes of the MAC and the underlying link capacity.

Compromised Verifiers. Compromising verifiers allows an
attacker to forward packets without a valid authorization proof.
Especially, in the case where only a limited number of verifiers
is deployed between two endpoints, the attack has a great
impact. For example, the compromised verifier positioned in
the hop right before the destination, e.g., the receiver’s SVTEP,
can pretend all the incoming packets are legitimate. This has
the same impact of compromising firewalls which is the last
defense line for the victim. For such an attack, no fundamental
solution exists. Deploying more verifiers in the network would
degrade the impact of the attack by early filtering the attack
packets before they reach the compromised verifier. Another
viable mitigation is to apply a verification method for infras-
tructure that monitors invariant security properties [52], [14],
[62].

B. Attacks leveraging SVLAN

In this attack class, we consider an attacker who abuses
the SVLAN protocols. The purpose of the attack is to disrupt
either network operation or SVLAN itself.

Bypassing Security Middleboxes. The original source routing
approach was leveraged to bypass the network defense mech-
anism, e.g., firewall [22]. The attacker specifies the routing
path that detours around security equipments, such that attack
packets are not filtered and arrive at the victim. Such an attack
is prevented by devolving the path construction to the AD; the

AD provides predefined SegS→R and S can not specify or
manipulate the routing path, enforcing routing over verifiers.
Furthermore, as the receiver’s SVTEP is able to act as a verifier
(see Section VIII-B), no attack packets will bypass the last
verifier.

Man-In-The-Middle Attack (MITM). An adversary may
attempt MITM attacks against applications communicating
over SVLAN for eavesdropping, forgery of packet payload, or
packet injection. The network isolation mechanism of SVLAN
will prevent any host not belonging to the virtual LAN to
be able to obtain access to the packets, and thus, prevent the
MITM attack. Malicious on-path network equipment, however,
might observe the traffic and could attempt an MITM attack;
which is a fundamental aspect of such systems in that the net-
work elements are trusted to perform their expected functions.
Nevertheless, in SVLAN, the bidirectional communication
path between two endpoints does not need to be symmetric,
such that the on-path MITM attack can also be mitigated by
using asymmetric communication paths.

Amplification Attack. To flood a target host, an adversary may
abuse the AD and amplify the attack volume. More precisely,
a compromised host sends getSegment() requests to the
AD with the address of its victim. The AD then replies to the
victim with an authorization proof. Nonetheless, this attack is
hardly successful, since the authorization-request has a small
amplification factor of 4 (i.e., 8 bytes request and 32 bytes
reply). Compared to the typical amplification attacks using
DNS or NTP, which have the amplification factor of up to 52
and 556 respectively, the getSegment() is barely effective.

VIII. DISCUSSION

In this section, we describe some practical considerations
and discuss how our model can be realized on today’s Internet.
More precisely, we discuss the entities that could serve as
the ADs or verifiers, as well as how we coordinate SVLAN
entities.We then describe how SVLAN supports bidirectional
communication when the receiver also needs to send packets
to the sender. Later, we discuss incremental deployability.

A. Location of Authorization Delegates

There are two requirements for an entity on the Internet
to become an AD. From a technical perspective, ADs should
be positioned close to the senders so that the senders can
receive authorization proofs with minimal latency overhead.
From a business perspective, the entity should have incentives
to serve as the ADs for the receivers. We consider two different
candidates to serve as the ADs, i.e., the receiver’s AS and a
third-party entity, such as a cloud service provider.

Receiver’s AS. The receiver’s ISP has a clear incentive to
become an AD for its customers. It can offer AD services as
part of a security bundle for their customers or as a value-
added service for their premium customers. In addition, it can
use the service as a distinguishing feature from other ISPs to
attract customers in today’s competitive ISP market.

However, using the receiver’s AS as the AD may increase
communication latency. For senders far way from the receiver,
the process of getting authorization proof would incur one
additional RTT.

11

Third-Party Entity. Alternatively, we can use a third-party
entity such as a cloud service provider as the AD. Similar to
today’s cloud-based traffic-scrubbing services, cloud providers
can bill the receivers based on the volume of (granted) autho-
rization requests. Communication overhead would be typically
lower than when using the receiver’s AS as AD but the
latency depends on the footprint of the cloud; if the cloud is
geographically diverse and has distributed points-of-presence
(PoPs), the communication overhead would be reduced. There
is also a disadvantage of using a cloud provider as an AD: the
cloud operator learns which entities communicate. However,
the privacy loss is not as severe as today’s traffic-scrubbing
services as the data between the sender and the receiver are
not forwarded through the cloud.

B. Choice of Verifiers

An entity that serves as a verifier also needs to have an
incentive to serve as a verifier. From a technical perspective,
the choice of verifiers has implications on the necessary state;
specifically, the ADs need to store every symmetric key that
they share with the verifiers (Section IV-A). Now, we provide
a summary of state overhead at the ADs based on the choices
of ADs and verifiers. We consider four entities as candidate
verifiers, of which three are on the path between the sender and
the receiver (i.e., the receiver, its ISP, and the sender’s ISP),5
and the other is a third-party entity (e.g., a cloud provider)
that may be off-path. We also discuss the advantages and
disadvantages of each choice.

Receiver. A receiver serves as the last line of defense to
drop a packet that it does not agree to, and it can drop the
packet with a light-weight operation (i.e., verify the validity
of the authorization proof), since symmetric cryptography can
be computed efficiently. In such a case, the authorization proof
plays a similar role as a TCP SYN cookie [50], which is used
to prevent SYN flooding attacks. However, the fact that an
unwanted packet has reached the receiver may be problematic:
1) the network has already wasted bandwidth to forward a
packet that would be dropped anyways, 2) the receiver may
have latent vulnerabilities (e.g., backdoors) that the packet
could trigger, and 3) the adversary may be able to congest
the links to the receiver or overload the receiver’s processing
capabilities with superfluous traffic.

In terms of state implication on the ADs, using the receiver
as the verifiers does not increase the amount of state at the
ADs, since they already store the receiving policies of all
receivers.

Receiver’s AS. Using the receiver’s AS as the verifier al-
leviates the disadvantages of the above approach, since un-
wanted packets would be filtered before reaching the receiver.
Moreover, the receiver’s ISP would be interested in serving as
the verifier, since the early filtering increases the efficiency of
its network and protects the receivers from potential danger,
which the ISP can sell as a value-added service to its customers
or use as a distinguishing feature to attract more customers.

To use the receiver’s AS as verifiers, the ADs need to
store per-AS keys, increasing the state overhead. Note that

5We do not consider intermediate ISPs, since incentives for such ISPs are
unclear.

the number of ASes could be relatively large compared to the
number of potential customers on an AS.

Sender’s AS. The main advantage of placing the verifier at
the sender’s AS would be to drop packets early and thus
avoid the transmission through the network. However, as seen
by other technologies such as egress filtering [6], the sender
AS may not have an incentive to filter out traffic for remote
destinations, or a malicious source AS could still flood the
receiver. Nonetheless, if the entire SVLAN is configured by a
single administrative entity such that it is one trusted network,
the sender-side verifier becomes an attractive choice.

Third-Party Entity. We also consider using an off-path third-
party entity, such as a cloud provider, to serve as the verifier.
This approach has three disadvantages: 1) it requires a detour
through the cloud, which can potentially increase latency and
the size of the packet due to the additional tunnel header to
redirect the packet to the cloud; 2) it requires additional per-
cloud state at the verifiers; and 3) similar to clouds that offer
today’s traffic-scrubbing services, the cloud can observe all
data traffic, leading to potential privacy problems.

C. Distributed Authorization Delegates

Running a cluster of multiple ADs is a possible de-
ployment approach for enhancing reliability, scalability, and
performance. For instance, SDN-based networks, which have
a similar architecture as SVLAN, often employ more than one
controller to mitigate the issue of single points of failure on
the control plane [26], [20]. Furthermore, instead of simply
employing an additional AD as a backup system, deploying
multiple ADs running in parallel such that each covers a geo-
graphical area would help load balancing, achieving scalabil-
ity [16]. It would also reduce latency by locating ADs closely
to the end hosts [51]. To ensure secure operation in running
multiple ADs deployed over a wide area, we consider two
coordination models for consistency in authorization policy
and SVTEP migration amongst ADs.

Coordination of Authorization Delegates. Keeping con-
sistency in authorization policy amongst ADs becomes an
essential part of the coordination process. In the context of dis-
tributed computing, the overhead in synchronization between
the distributed ADs increases as more ADs are joined into the
cluster, raising issues of scalability.

We consider consensus algorithms to ensure consistency
across the cluster, that can be categorized as mainly two
approaches: strong consistency model [41], [45], [35] and
eventual consistency model [57], [27], [30]. With the strong
consistency model, the authorization policies across the dis-
tributed ADs are replicated, assuring the ADs have the latest
policies. In contrast, the eventual consistency model omits
the consensus process, thus improving the reactivity perceived
by SVTEP. The main drawback are possible short-term in-
consistencies. To provide a consistent control logic for the
entire network, the strong consistency model can be lever-
aged. Furthermore, open-source projects which enable reliable
distributed coordination can be used, such as ZooKeeper6 or
Consul7.

6https://zookeeper.apache.org/
7https://github.com/hashicorp/consul

12

SVTEP Migration. Once consistency of the authorization
policies amongst the distributed ADs is secured, the coordi-
nation of the SVTEPs becomes less critical; SVTEPs are able
to get the same result from any of the ADs. Therefore, the
main consideration for the SVTEP coordination is to discover
the best AD in terms of scalability, reliability and performance.
There are several ways to find the AD, for instance:

• Explicit configuration: each SVTEP is configured with
AD information as an initial rendezvous point. Since
virtual LANs used to be provisioned by a single or a
few administrative entities, configuring SVTEPs upon
setup is straightforward approach.

• DNS-based discovery: through DNS entries (e.g., ad-
ditional text field), a SVTEP can obtain information
on the AD. If only the destination IP address is known,
a reverse DNS lookup can first be performed.

We consider that an SVTEP is initially configured with
a primary AD IP address and a set of secondary AD IP
addresses. The SVTEP first tries to connect to the primary
AD and if the connection fails, then tries one of the secondary
ADs. That is, an SVTEP is connected to an AD at a time,
preventing duplicate processing of asynchronous requests that
could result in duplicate path segments or unnecessary resource
consumption. Unlike the concept of master and slave in
the distributed SDN controller architecture, the primary and
secondary ADs are functionally equal except for the delay in
the getSegment() protocol. Thus, the SVTEP migration
keeps to find the best primary AD in terms of latency as well
as load balancing, and automatically adjust the target AD when
the network changes.

Similar to the multiple-controller support in Open-
Flow [40], we intend the migration is initiated by the ADs,
which enables fast recovery from potential failure and load
balancing. The ADs coordinate the migration of the SVTEP
amongst themselves via the management plane, and decides
an AD to be a primary. Then, the next primary AD sends
a RoleChange() message to the SVTEP. It swaps the
primary AD from the current one to the requested one. In
the migration process, we intend to minimize the functionality
in the SVTEPs since it is not desirable and would cause
unnecessary overheads.

D. Bidirectional Communication

Thus far, we have only considered one-way communication
where the sender sends packet to the receiver. However,
in reality, most communication is bidirectional; that is, the
receiver also sends packets back to the sender. In this section,
we discuss how we support bidirectional communication.

Implicit Consent. One possibility is to implicitly assume
that the sender would be willing to accept packets from the
receiver, since the sender initiates the communication to the
receiver. This model is promising as most communications are
bidirectional and has been adopted by NAT and other past
proposals [7].

However, the implicit model cannot support the case
where the sender wants the communication to be entirely
unidirectional. For example, fragile IoT devices may transmit
measurement data to the data-aggregation hub but may not

want to receive any message back from the hub for security
reasons. In addition, the realization of the implicit model in
NAT and off-by-default [7] requires the verifier (in case of
NAT, the NAT device) to remember all active communication
to approve and/or forward packets from the receiver to the
sender.

Explicit Consent. Instead, we consider an explicit consent
where the receiver must acquire consent from the sender to
send a packet to the sender. In one approach, the receiver
can acquire consent by requesting an authorization proof from
the sender’s AD; however, such an approach incurs additional
communication latency. Instead, we add a flag (i.e., RepFlag)
to the proof Equation (1) to indicate that the sender approves
packets from the receiver; then, the verifier would only forward
a packet to the sender if the RepFlag is set. In terms of the
protocol (Section IV-B), we extend protocol 1, 2, and 3 to
include the RepFlag .

E. Deployment

A major deployment difficulty for many new technologies
is the lack of incremental deployability. We conjecture that
the deployment of new technologies follows a similar trend:
First-movers with a critical need for a new technology start
to adopt the technology to their network. As the followers
observe customer demand and recognize the necessity of the
technology, the mainstream deploys it. In terms of incremental
deployability, a viable technology needs to have a clear incen-
tive for the early adopters and incremental benefits for the early
majority. However, many proposed schemes are often valuable
only if the late majority adopts; there is no benefit for the early
adopters.

SVLAN provides strong incremental deployability prop-
erties. First, it does not require a global deployment of new
protocols, but a partial deployment for endhosts who wish to
establish a virtual network. Although it requires coordination
amongst the ISPs, setting up a tunnel requires minimal coor-
dination only between networks in which the two endpoints
are located; to ensure a secure transmission over untrusted
intermediate ISPs between the endpoints, existing underlying
mechanisms (e.g., VPN) can be applied for the early deploy-
ment phase. The partial deployment of source and destination
network ensures the same level of security, scalability, and
flexibility, encouraging early adoption.

Second, SVLAN does not necessarily rely on a specific
network architecture (e.g., SCION), since it is designed as
a generic scheme that can be easily adapted to various ar-
chitectures that support segment routing. Segment routing is
already supported and deployed by all major router vendors:
Cisco, Huawei, Juniper, etc. Furthermore, to keep compatibility
with the current Internet, we avoid any substantial changes in
our design of new entities; the AD can be easily implemented
on top of SDN controllers as an add-on application, and the
SVTEP and verifier can be realized with vSwitch.

Third, SVLAN benefits early adopters with clear market
incentives. Cloud service providers can offer premium services
to their customers by setting up secure virtual networks be-
tween data centers. ISPs can achieve a better provision for their
network with the flexible and scalable network virtualization.

13

IX. CONCLUSION

Network virtualization is one of the key components of fu-
ture Internet innovation. To improve scalability, flexibility and
security, we have introduced a framework that leverages the
concept of destination-driven networking and packet-carrying
forwarding state. SVLAN ensures receivers’ consent in com-
munication, enabling fine-grained network virtualization. With
the stateless routing and expressive authorization policies, we
achieve management scalability for dynamic network slicing.
Our evaluation demonstrates that SVLAN introduces a small
one-time overhead (32.0 µs of additional latency on average)
to the initial communication setup without a significant perfor-
mance degradation in data transmission. We envision SVLAN
to support diverse demands on network slicing, leading to
secure communication and efficient administration.

ACKNOWLEDGEMENTS

We thank Patrick Bamert, Markus Legner, Ankit Singla,
and the anonymous reviewers for their insightful feedback and
suggestions. We gratefully acknowledge support from ETH
Zürich and from the Zürich Information Security and Privacy
Center (ZISC).

REFERENCES

[1] Z. Al-Qudah, E. Johnson, M. Rabinovich, and O. Spatscheck, “Internet
With Transient Destination-Controlled Addressing,” Transactions on
Networking (TON), IEEE/ACM, vol. 24, no. 2, pp. 731–744, 2016.

[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” in Proceedings
of the ACM Conference on SIGCOMM, 2008.

[3] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet Denial-
of-Service with Capabilities,” in Proceedings of the ACM Workshop on
Hot Topics in Networks (HotNets), 2003.

[4] K. Argyraki and D. R. Cheriton, “Active Internet Traffic Filtering: Real-
Time Response to Denial-of-Service Attacks,” in Proceedings of the
USENIX Annual Technical Conference (ATC), 2005.

[5] K. Argyraki and D. R. Cheriton, “Network capabilities: The good, the
bad, and the ugly,” in Proceedings of the ACM Workshop on Hot Topics
in Networks (HotNets), 2005.

[6] F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks,”
RFC 3704 (Best Current Practice), IETF, Mar. 2004. [Online].
Available: https://www.ietf.org/rfc/rfc3704.txt

[7] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker,
“Off by Default!” in Proceedings of the ACM Workshop on Hot Topics
in Networks (HotNets), 2005.

[8] C. Basescu, R. M. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang,
H.-C. Hsiao, K. A., and U. J., “SIBRA:Scalable Internet Bandwidth
Reservation Architecture,” in Proceedings of the Symposium on Network
and Distributed System Security (NDSS), 2016.

[9] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee, “Accountability
as a Service,” in Proceedings of the USENIX Workshop on Steps to
Reducing Unwanted Traffic on the Internet (SRUTI), 2007.

[10] J. Brzozowski, J. Leddy, C. Filsfils, R. Maglione, and M. Townsley,
“Use Cases for IPv6 Source Packet Routing in Networking (SPRING),”
Tech. Rep., 2018.

[11] F. Cai, Y. Chen, D. Wu, and Z. Fang, “VxLAN Security Implemented
using VxLAN Membership Information at VTEPs,” May 26 2016, US
Patent App. 14/549,915.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” in Proceedings
of the ACM Conference on SIGCOMM, 2007.

[13] M. Casado, T. Garfinkel, A. Akella, M. Friedman, D. Boneh, N. Mcke-
own, and S. Shenker, “SANE: A Protection Architecture for Enterprise
Networks,” in USENIX Security, Aug. 2006.

[14] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to Detect a
Compromised SDN Switch,” in Proceedings of the IEEE Conference
on Network Softwarization (NetSoft), 2015, pp. 1–6.

[15] R. B. da Silva and E. S. Mota, “A Survey on Approaches to Reduce
BGP Interdomain Routing Convergence Delay on the Internet,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2949–2984,
2017.

[16] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an Elastic Distributed SDN Controller,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 7–12, 2013.

[17] L. Dunbar, W. Kumari, and I. Gashinsky, “Practices for Scaling
ARP and Neighbor Discovery (ND) in Large Data Centers,”
RFC 7342 (Informational), IETF, Aug. 2014. [Online]. Available:
https://www.ietf.org/rfc/rfc7342.txt

[18] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” Tech. Rep., 2018.

[19] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid, “TI-MFA: Keep
Calm and Reroute Segments Fast,” in IEEE INFOCOM Workshops
(INFOCOM WKSHPS). IEEE, 2018, pp. 415–420.

[20] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski, “A Fault-
tolerant and Consistent SDN Controller,” in Proceedings of the IEEE
Global Communications Conference (GLOBECOM), 2016, pp. 1–6.

[21] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4. ACM, 2009, pp. 51–62.

[22] R. E. Haeni, “Firewall Penetration Testing,” Technical report, The
George Washington University Cyberspace Policy, Tech. Rep., 1997.

[23] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast Connectivity Recovery Entirely in the
Data Plane,” in Proceedings of the USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2019, pp. 161–176.

[24] S. Homma, H. Nishihara, T. Miyasaka, A. Galis, V. RAM OV,
D. Lopez, L. Contreras-Murillo, J. Ordonez-Lucena, P. Matinez-Julia,
L. Qiang, R. Rokui, L. Ciavaglia, and X. de Foy, “Network Slice
Provision Models,” 2019. [Online]. Available: "https://datatracker.ietf.
org/doc/draft-homma-slice-provision-models/"

[25] P. Jain, M. Mehta, S. Jain, and Y. Yang, “Microsegmentation in
Heterogeneous Software Defined Networking Environments,” Nov. 23
2017, US Patent App. 15/159,379.

[26] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
Fault-tolerance in Software Defined Networking,” in Proceedings of
the ACM SIGCOMM Symposium on Software Defined Networking
Research, 2015, p. 4.

[27] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Distributed
Control Platform for Large-scale Production Networks.” in Proceedings
of the USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI), vol. 10, 2010, pp. 1–6.

[28] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
Rrouting Convergence,” ACM SIGCOMM Computer Communication
Review, vol. 30, no. 4, pp. 175–187, 2000.

[29] T. Lee, C. Pappas, D. Barrera, P. Szalachowski, and A. Perrig, “Source
Accountability with Domain-brokered Privacy,” in Proceedings of the
ACM Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT), 2016.

[30] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically Centralized?: State Distribution Trade-offs in Software De-
fined Networks,” in Proceedings of the ACM Workshop on Hot Topics
in Software Defined Networking (HotSDN), 2012, pp. 1–6.

[31] X. Liu, X. Yang, and Y. Lu, “To Filter or to Authorize: Network-Layer
DoS Defense Against Multimillion-node Botnets,” in Proceedings of
the ACM Conference on SIGCOMM, 2008.

[32] X. Liu, X. Yang, D. Wetherall, and T. Anderson, “Efficient and Secure
Source Authentication with Packet Passports,” in Proceedings of the
USENIX Workshop on Steps to Reducing Unwanted Traffic on the
Internet (SRUTI), 2006.

[33] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks

14

over Layer 3 Networks,” RFC 7348 (Informational), IETF, Aug. 2014.
[Online]. Available: https://www.ietf.org/rfc/rfc7348.txt

[34] O. Mämmelä, J. Hiltunen, J. Suomalainen, K. Ahola, P. Mannersalo, and
J. Vehkaperä, “Towards Micro-segmentation in 5G Network Security,”
in European Conference on Networks and Communications (EuCNC
2016) Workshop on Network Management, Quality of Service and
Security for 5G Networks, 2016.

[35] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a Model-driven SDN Controller Architecture,” in Proceedings of the
IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, 2014, pp. 1–6.

[36] A. Morton, “IMIX Genome: Specification of Variable Packet Sizes
for Additional Testing,” RFC 6985 (Informational), IETF, Jul. 2013.
[Online]. Available: https://www.ietf.org/rfc/rfc6985.txt

[37] L. Muller and J. Soto, “Micro Segmentation for Dummies,” Tech. Rep.,
2015.

[38] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and Enforcing Network Paths with ICING,”
in Proceedings of the ACM Conference on Emerging Networking
EXperiments and Technologies (CoNEXT), 2011.

[39] D. Naylor, M. K. Mukerjee, and P. Steenkiste, “Balancing Accountabil-
ity and Privacy in the Network,” in Proceedings of the ACM Conference
on SIGCOMM, 2014.

[40] A. Nygren, B. Pfaff, B. Lantz, B. Heller, C. Barker, C. Beckmann,
D. Cohn, D. Malek, D. Talayco, D. Erickson et al., “Openflow Switch
Specification Version 1.5.1,” Open Networking Foundation, Tech. Rep.,
2015.

[41] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “Cap for
Networks,” in Proceedings of the ACM Workshop on Hot Topics in
Software Defined Networking (HotSDN), 2013, pp. 91–96.

[42] B. Parno, D. Wendlandt, E. Shi, A. Perrig, and Y.-C. Hu, “Portcullis:
Protecting Connection Setup from Denial-of-Capability Attacks,” in
Proceedings of the ACM Conference on SIGCOMM, 2007.

[43] S. Peng, R. Chen, and G. Mirsky, “Packet Network Slicing using
Segment Routing,” 2019. [Online]. Available: "https://datatracker.ietf.
org/doc/draft-peng-lsr-network-slicing/"

[44] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION: A
Secure Internet Architecture. Springer International Publishing, 2017.

[45] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed Multi-domain
SDN Controllers,” in Proceedings of the IEEE Network Operations and
Management Symposium (NOMS), 2014, pp. 1–4.

[46] D. Project, “Data Plane Development Kit,” https://dpdk.org, Nov 2019,
retrieved on 1/2020.

[47] B. Raghavan and A. C. Snoeren, “A System for Authenticated Policy-
Compliant Routing,” in Proceedings of the ACM Conference on SIG-
COMM, 2004.

[48] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “SDNsec:

Forwarding accountability for the SDN data plane,” in Proceedings
of the International Conference on Computer Communication and
Networks (ICCCN). IEEE, 2016, pp. 1–10.

[49] H. Shah and A. Ghanwani, “ARP Broadcast Reduction for Large Data
Centers,” 2011.

[50] W. Simpson, “TCP Cookie Transactions (TCPCT),” RFC 6013
(Experimental), IETF, Jan. 2011. [Online]. Available: https://www.ietf.
org/rfc/rfc6013.txt

[51] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Explor-
ing Source Routed Forwarding in SDN-based WANs,” in 2014 IEEE
International Conference on Communications (ICC), 2014, pp. 3070–
3075.

[52] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model Checking
Invariant Security Properties in OpenFlow,” in Proceedings of the IEEE
International Conference on Communications (ICC), 2013, pp. 1974–
1979.

[53] J. Song, R. Poovendran, J. Lee, and T. Iwata, “The AES-CMAC
Algorithm,” RFC 4493 (Informational), IETF, Jun. 2006. [Online].
Available: https://www.ietf.org/rfc/rfc4493.txt

[54] X. Su, S. Bryant, A. Farrel, S. Hassn, W. Henderickx, and
Z. Li, “SR-MPLS over IP,” 2019. [Online]. Available: "https:
//datatracker.ietf.org/doc/draft-ietf-mpls-sr-over-ip/"

[55] X. Sun, Y.-W. Sung, S. D. Krothapalli, and S. G. Rao, “A Systematic
Approach for Evolving VLAN Designs,” in IEEE INFOCOM, 2010,
pp. 1–9.

[56] C. A. Sunshine, “Source Routing in Computer Networks,” ACM SIG-
COMM Computer Communication Review, vol. 7, no. 1, pp. 29–33,
1977.

[57] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed Control
Plane for Openflow,” in Proceedings of ACM Internet Network Manage-
ment Conference on Research on Enterprise Networking, vol. 3, 2010.

[58] VMWare, “Data Center Micro-Segmentation: A Software Defined Data
Center Approach for a Zero Trust Security Strategy,” Tech. Rep., 2014.

[59] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2004.

[60] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,”
Communications Surveys & Tutorials, IEEE, vol. 15, no. 4, 2013.

[61] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. An-
dersen, “SCION: Scalability, Control, and Isolation on Next-Generation
Networks,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2011.

[62] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng,
“SDN-RDCD: A Real-time and Reliable Method for Detecting Compro-
mised SDN Devices,” IEEE/ACM Transactions on Networking, vol. 26,
no. 5, pp. 2048–2061, 2018.

15

