

Swiss Cybersecurity Days

Adrian Perrig

Network Security Group, ETH Zürich

What used to keep me up all night ...

TECH CYBERSECURITY ENTERPRISE

Hackers emptied Ethereum wallets by breaking the

basic infrastructure of the internet

By Russell Brandom | @russellbrandom | Apr 24, 2018, 1:40pm EDT

Hijack of Am service used hours unnot

Between 11am until 1] internet, routing you t unknown actor.

Users of MyEtherWallet, a web app for storing and sending ether and ethereum-based tokens, experienced an attack Tuesday that saw users of the service lose around \$152,000 worth of ether.

count major websites such as
Twitter.com as customers.

NEWS

What's now keeping me up all night?

21st Century Internet Architecture

- Similar to real-world architecture, Internet Architectural trends change over time, typically not just driven by aesthetics, but also by applications
 - Early networks were circuit-switched for telephony
 - 50 years ago, packet switching started and formed the basis of today's Internet
- Recent architectural trends
 - High security and availability
 - Path-aware networking

"Self-evident" Properties of a Next-Generation Internet Architecture

- Security (broadly defined)
 - High availability even under attack
- Path awareness, path selection
- Multi-path operation
- Formal verification
- Transparency
- Sovereignty

Importance of Path Awareness & Multi-path

- Generally, two paths exist between Europe and Southeast Asia
 - High latency, high bandwidth: Western route through US, ~450ms RTT
 - Low latency, low bandwidth: Eastern route through Suez canal, ~250ms RTT
- BGP is a "money routing protocol", traffic follows cheapest path, typically highest bandwidth path
- Depending on application, either path is preferred
- With SCION, both paths can be offered!

What is SCION?

- Secure inter-domain routing architecture, to replace BGP
- Open Internet platform, open-source
- Highly efficient: enables faster communication than in current Internet
- Highly secure: attacks are either impossible by design or significantly weakened
- Verifiably secure: Security proofs through formal methods
- Next-generation global Internet: secure path-aware multi-path communication

SCION Overview in One Slide

Path-aware Network Architecture

Control Plane - Routing

Constructs and Disseminates Path Segments

Data Plane - Packet forwarding

- Combine Path Segments to Path
- Packets contain Paths
- Routers forward packets based on Path
 - ▶ Simple routers, stateless operation

Use Case: IoT Protection through Hidden Path

Use Case: High-Speed Interdomain Failover

- Common failure scenarios in current Internet
 - Long-term failures (infrequent): large-scale failures require hours until BGP re-stabilizes
 - Intermediate-term failures (at each interdomain router or link failure): 3-5 minutes until path is cleanly switched
 - Short-term failures (frequent): during BGP route change, routing loop during 5-10 seconds
- SCION: backup path is already set up and ready to be used when a link failure is observed
- Result: failover within milliseconds!

How to Deploy SCION – Core Network

- Two components: SCION core services (control plane) and SCION border routers (data plane)
- SCION reuses existing intra-domain networking infrastructure—no need to upgrade all networking hardware

How to Deploy SCION – End Domains

- SCION IP Gateway
 enables seamless
 integration of SCION
 capabilities in end-domain
 networks
- No upgrades of end hosts or applications needed
- SCION is transportagnostic thus can work over many different underlaying networks

SCI-ED: <u>SCI</u>ON for <u>E</u>TH <u>D</u>omain

- Goals
 - Large-scale real-world deployment: ETH, EPFL, PSI, CSCS, EMPA, EAWAG, WSL
 - Operationalize SCION in SWITCH network
 - Expand and demonstrate maturity of SCION on real-world use cases
- SCION use cases in the ETH Domain
 - High-performance data transmission
 - Secure communication of sensitive data
 - High availability for critical infrastructures
 - Platform for networking research

SCION Production Network

- Important point: BGP-free global communication
 - We need failure-independence from BGP protocol

- Discussions with domestic and international ISPs
 - Goal: First inter-continental public secure communication network
- Construction of SCION network backbone at select locations to bootstrap adoption
- Current deployment
 - ISPs: Swisscom, Sunrise, SWITCH, +others
 - Bank deployment: 4 major Swiss banks, some in production use
 - Swiss government has SCION in production use

LightningFilter: Traffic Filtering at 120 Gbps

Benjamin Rothenberger

In collaboration with:

Prof. Adrian Perrig, Juan Garcìa Pardo, Dominik Roos, Jonas Gude, Pascal Sprenger, Florian Jacky

Project Goals

- High-speed packet processing requires nanosecond operations
 - Example: 64-byte packets @ 100Gbps: ~5ns processing time
- Nanosecond scale key establishment
- Nanosecond scale packet authentication
- Trivia: how "long" is a nanosecond?
 - Answer: light travels about 30cm in 1ns

High-Speed Packet Processing

- Current high-speed Internet links: 400Gbit/s (Gbps)
- Arrival rate for 64-byte packets: one packet every 1.3 ns
- High-speed asymmetric signature implementation: Ed25519 SUPERCOP REF10: $\sim 100 \mu s$ per signature
- AES-NI instruction only requires 30 cycles: ~ 10ns
- Memory lookup from DRAM requires ~ 200 cycles: ~ 70ns
- Only symmetric crypto enables high-speed processing through parallel processing and pipelining

DRKey & Control-Plane PKI

- SCION offers a global framework for authentication and key establishment for secure network operations
- Control-pane PKI
 - Sovereign operation thanks to ISD concept
 - Every AS has a public-key certificate, enabling AS authentication
- DRKey
 - High-speed key establishment (within 20 ns), enabling powerful DDoS defense

Dynamically Recreatable Key (DRKey)

- Idea: use a per-AS secret value to derive keys with an efficient Pseudo-Random Function (PRF)
- Example: AS X creates a key for AS Y using secret value SV_X
 - $K_{X\rightarrow Y} = PRF_{SV_X} ("Y")$
 - Intel AES-NI instructions enable PRF computation within 30 cycles, or 70 cycles for CMAC Key computation is 3-5 times faster than DRAM key lookup!
 - Any entity in AS X knowing secret value SV_X can derive K_{X→*}

DRKey Performance

```
./fast-signing-eval

Authentication / Signing times averaged over 1000000 runs:

DRKey: 84.8 ns
Ed25519: 125.5 μs
```

Factor: ~ 1450x

DRKey Use Case: SCMP Authentication

■ Border router in AS B can derive key $K_{B o A:Source}^{scmp}$ from SV_B

Host "Source" can fetch key from local key server KS_A to

authenticate SCMP message

ETH zürich

Lightning Filter Design Overview

Demo Outline

- 1. Attack scenario
 - Attacker located anywhere in Internet

 Source authentication
- 2. Bandwidth capacity
 - 120 Gbps traffic volume
- 3. Filtering based on source authentication
 - Alternate between filtering and bypass every 30s
- 4. Duplicate suppression
 - 80 Gbps duplicates traffic, 40 Gbps legitimate traffic

Online Resources

- https://www.scion-architecture.net
 - Book, papers, videos, tutorials
- https://www.scionlab.org
 - SCIONLab testbed infrastructure
- https://www.anapaya.net
 - SCION commercialization
- https://github.com/scionproto/scion
 - Source code

Summary

- Next-generation Internet you can use today!
- High-performance
 - Path-aware network enables application-specific optimizations to provide enhanced efficiency
 - Multi-path communication enables simultaneous use of multiple paths, increasing available bandwidth
- Secure and highly available
 - Built-in DDoS defenses
 - Lightning-fast failover
 - Immune against routing attacks, e.g., BGP prefix hijacking

Thank you for your attention!

