

Do we need a new Internet? Part 1: Basic Issues

Adrian Perrig Network Security Group, ETH Zürich

Imagine a building or structure that represents the Internet

The Internet

... an ancient structure ...

... that appears stable and seems unchangeable

More like today's Internet ...

Transparency

Control

Availability

Transparency

Control

Problem 1: Availability

Availability

Poor Availability

- Well-connected entity: 99.9% availability (86 s/day unavailability) [Katz-Bassett et al., Sigcomm 2012]
 - Plug-into-the wall telephones: 99.999% availability (0.86 s/day unavailability)!
- Numerous short-lived outages due to Border Gateway Protocol (BGP) route changes and route convergence delays
- Outages due to misconfigurations
- Outages due to attacks
 - E.g., prefix hijacking, DDoS

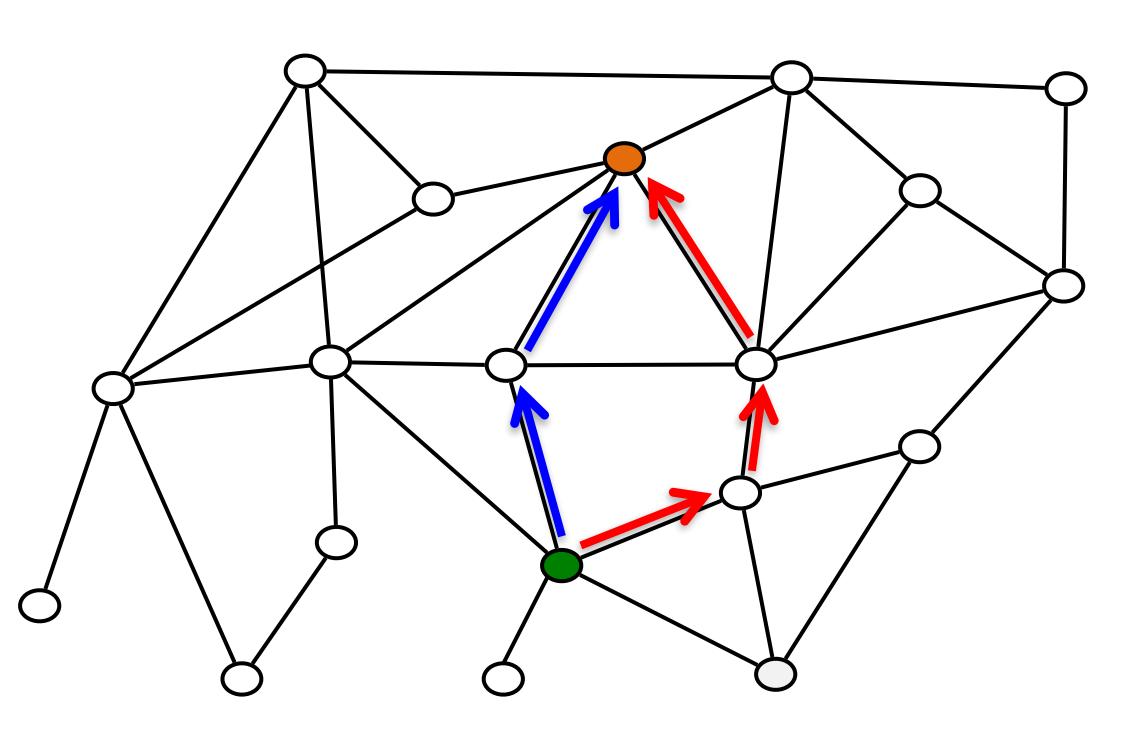
Problem 2: Control

Transparency

Secure E2E Comm

Who controls Internet Paths?

Current Internet offers limited control of pathsPaths can be hijacked and redirected



SCION

Limited Path Control in BGP

- Current Internet offers limited control of paths

 - No inbound traffic control

Border Gateway Protocol (BGP) floods announcements for destinations

SCION

Who should control Paths?

- policies
- (sender and receiver) have?
 - providing too much control?

No Endpoint Control

Clearly, ISPs need some amount of path control to enact their

How much path control should end domains and end points

Control is a tricky issue ... how to empower end points without

Complete Endpoint Control

Problems due to Lack of Path Control

- Limited traffic load balancing for sender and receiver No multi-path communication
- No optimization of networking paths for sender and receiver
- Poor availability
 - Outages cannot be circumvented
 - Connection can suddenly break
- Traffic redirection attacks become possible

SCION

Transparency

Problem 3: Transparency

Path transparency

- Today, sender cannot obtain guarantee that packet will travel along intended path
- Impossible to gain assurance of packet path Because router forwarding state can be different from routing
- messages received
- Trust transparency
 - Today, we cannot enumerate trust roots we rely upon

Problem 4: Secure E2E Communication

Fake Certificates lead to Attack

Adversary misuses fake certificate to impersonate one party to the other (man-in-the-middle attack)

1		C	
Ч	-	-	ø

Problems with SSL / TLS Certificates

- Famous case: false Microsoft ActiveX certificate issued by Verisign in January 2001
- VeriSign Hacked, Successfully and Repeatedly, in 2010
 - VeriSign attacks were revealed in a quarterly U.S. Securities and Exchange Commission filing in October 2011
- login.live.com
 - Suggested that attack originated from Iranian IP address
 - http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
- August 29, 2011: news broke that DigiNotar, a Dutch CA, improperly issued a certificate for all Google domains to an external party
 - Claim: 250 certificates for an unknown number of domains were released
 - August 2011
- Stuxnet used compromised certificates from 2 Taiwanese CAs

March 2011: Attack on Commodo reseller, several fraudulent certificates were issued: mail.google.com, www.google.com, login.yahoo.com, login.skype.com, addons.mozilla.org,

Iranian government spied on Iranian citizens' communications with Google email during the month of

Non-Scalability of Trust

- - Complicates construction of entity authentication infrastructures
- security properties
 - Single points of failure
 - Security of the weakest link

As the Internet has grown to encompass a large part of the global population, trust relationships have become heterogeneous: no single entity trusted by everyone

Current Internet authentication infrastructures have weak

Summary: Which Problems Should we Address?

- High availability: enable end-to-end connectivity despite network disruptions
- Path control: ISP, sender, and receiver, jointly control end-to-end paths
- Transparency
 - Path transparency: sender should be aware of packet's path
 - Trust transparency: known roots of trust that need to be relied upon
- Resilience to compromised trust roots: limit global scope of certification authorities

SCION

For More Information ...

- ... please see our web page:
 <u>www.scion-architecture.net</u>
- Chapter 1 of our book "SCION: A secure Internet Architecture"
 - Available from Springer this Summer 2017
 - PDF available on our web site
- Part 2 of this presentation: "Motivations for Change"

SCION

